精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线y=ax2+bx+c的顶点为C(1,0),且与直线l:y=x+m交y轴于同一点B(0,1),与直线l交于另一点A,D为抛物线的对称轴与直线l的交点,P为线段AB上的一动点(不与点A、B重合),过点P作y轴的平行线交抛物线于点E.
(1)求抛物线和直线l的函数解析式,及另一交点A的坐标;
(2)求△ABE的最大面积是多少?
(3)问是否存在这样的点P,使四边形PECD为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
分析:(1)由抛物线y=ax2+bx+c的顶点为C(1,0),可设此抛物线的解析式为:y=a(x-1)2,然后由待定系数法即可求得抛物线和直线l的函数解析式,然后联立两个解析式,即可求得另一交点A的坐标;
(2)首先过点E作EG⊥y轴于点G,过点A作AF⊥EG于点F,然后设E(x,x2-2x+1),由S△ABE=S梯形ABGF-S△BEG-S△AEF,利用二次函数的性质,即可求得△ABE的最大面积;
(3)由平行四边形的判定,可得当PE=CD时,四边形PECD为平行四边形,然后设P(x,x+1),则点E(x,x2-2x+1),即可得PE=(x+1)-(x2-2x+1)=-x2+3x=2,继而可求得点P的坐标.
解答:解:(1)∵抛物线y=ax2+bx+c的顶点为C(1,0),
∴设此抛物线的解析式为:y=a(x-1)2
∵点B(0,1)在此抛物线上,
∴a=1,
∴此抛物线的解析式为:y=(x-1)2=x2-2x+1;
∵直线l:y=x+m交y轴于点B(0,1),
∴1=0+m,
解得:m=1,
∴直线l的函数解析式为y=x+1;
联立得:
y=x2-2x+1
y=x+1

解得:
x=3
y=4
x=0
y=1

故点A的坐标为:(3,4);

(2)过点E作EG⊥y轴于点G,过点A作AF⊥EG于点F,
设E(x,x2-2x+1),
∴EG=x,EF=3-x,BG=1-(x2-2x+1)=-x2+2x,AF=4-(x2-2x+1)=-x2+2x+3,GF=3,
∴S△ABE=S梯形ABGF-S△BEG-S△AEF=
1
2
(BG+AF)•GF-
1
2
BG•EG-
1
2
EF•AF
=
1
2
×[(-x2+2x)+(-x2+2x+3)]×3-
1
2
×(-x2+2x)×x-
1
2
×(3-x)×(-x2+2x+3)
=-
-3x2+9x
2
=-
3
2
(x-
3
2
2+
27
8

∴当x=
3
2
时,S△ABE的最大值为:
27
8

∴△ABE的最大面积是
27
8


(3)存在.
∵PE∥y轴,CD∥y轴,
∴PE∥CD,
∴当PE=CD时,四边形PECD为平行四边形,
∵点D在直线y=x+1上,且点D的横坐标为1,
∴点D(1,2),
∴CD=2,
设P(x,x+1),则点E(x,x2-2x+1),
∴PE=(x+1)-(x2-2x+1)=-x2+3x=2,
即x2-3x+2=0,
解得:x=1或x=2,
故点P的坐标为:(2,3).
点评:此题考查了待定系数法求函数的解析式、函数的交点问题、二次函数的最值问题以及平行四边形的判定.此题难度较大,注意掌握辅助线的作法,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案