9£®ÔÚÊýÖáÉÏÓÐÈý¸öµãA¡¢B¡¢C£¬ËüÃDZíʾµÄÓÐÀíÊý·Ö±ðΪa¡¢b¡¢c£®ÒÑÖªaÊÇ×î´óµÄ¸ºÕûÊý£¬ÇÒ|b+4|+£¨c-2£©2=0£®
£¨1£©ÇóA¡¢B¡¢CÈýµã±íʾµÄÓÐÀíÊý·Ö±ðÊǶàÉÙ£¿
£¨2£©Ìî¿Õ£º
¢ÙÈç¹ûÊýÖáÉϵãDµ½A£¬CÁ½µãµÄ¾àÀëÏàµÈ£¬ÔòµãD±íʾµÄÊýΪ$\frac{1}{2}$£»
¢ÚÈç¹ûÊýÖáÉϵãEµ½µãAµÄ¾àÀëΪ2£¬ÔòµãE±íʾµÄÊýΪ1»ò-3£»
£¨3£©ÔÚÊýÖáÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µãFµ½µãAµÄ¾àÀëÊǵãFµ½µãBµÄ¾àÀëµÄ2±¶£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãF±íʾµÄÊý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÓÐÀíÊýµÄ¸ÅÄîÇó³öa£¬ÔÙ¸ù¾Ý·Ç¸ºÊýµÄÐÔÖÊÁÐʽÇó³öb¡¢cµÄÖµ£¬È»ºóд³öA¡¢B¡¢CÈýµã±íʾµÄÊý¼´¿É£»
£¨2£©¢ÙÉèµãD±íʾµÄÊýΪx£¬È»ºó±íʾ³öµãDµ½µãA¡¢CµÄ¾àÀë²¢Áгö·½³ÌÇó½â¼´¿É£»
¢ÚÉèµãE±íʾµÄÊýΪy£¬È»ºóÁгö¾ø¶ÔÖµ·½³ÌÇó½â¼´¿É£»
£¨3£©ÉèµãF±íʾµÄÊýΪz£¬È»ºóÁгö¾ø¶ÔÖµ·½³Ì£¬ÔÙÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©¡ßaÊÇ×î´óµÄ¸ºÕûÊý£¬
¡àa=-1£¬
ÓÉÌâÒâµÃ£¬b+4=0£¬c-2=0£¬
½âµÃb=-4£¬c=2£¬
ËùÒÔ£¬µãA¡¢B¡¢C±íʾµÄÊý·Ö±ðΪ-1¡¢-4¡¢2£»

£¨2£©¢ÙÉèµãD±íʾµÄÊýΪx£¬
ÓÉÌâÒâµÃ£¬x-£¨-1£©=2-x£¬
½âµÃx=$\frac{1}{2}$£¬
ËùÒÔ£¬µãD±íʾµÄÊýΪ$\frac{1}{2}$£»
¢ÚÉèµãE±íʾµÄÊýΪy£¬
ÓÉÌâÒâµÃ£¬|y-£¨-1£©|=2£¬
ËùÒÔ£¬y+1=2»òy+1=-2£¬
½âµÃy=1»òy=-3£¬
ËùÒÔ£¬µãE±íʾµÄÊýΪ1»ò-3£»
¹Ê´ð°¸Îª£º$\frac{1}{2}$£»1»ò-3£®

£¨3£©ÉèµãF±íʾµÄÊýΪz£¬
ÓÉÌâÒâµÃ£¬|z-£¨-1£©|=2|z-£¨-4£©|£¬
ËùÒÔ£¬z+1=2£¨z+4£©»òz+1=-2£¨z+4£©£¬
½âµÃz=-7»òz=-3£¬
ËùÒÔ£¬µãF±íʾµÄÊýΪ-7»ò-3£®

µãÆÀ ±¾Ì⿼²éÁ˷ǸºÊýµÄÐÔÖÊ£º¼¸¸ö·Ç¸ºÊýµÄºÍΪ0ʱ£¬Õ⼸¸ö·Ç¸ºÊý¶¼Îª0£¬ÊýÖáÉÏÁ½µã¼äµÄ¾àÀëµÄ±íʾ£¬×¼È·Áгö·½³ÌÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª£ºÈçͼ£¬AD¡ÎBC£¬EF´¹Ö±Æ½·ÖBD£¬ÓëAD£¬BC£¬BD·Ö±ð½»ÓÚµãE£¬F£¬O£®ÇóÖ¤£º
£¨1£©¡÷BOF¡Õ¡÷DOE£»
£¨2£©DE=DF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®½â·½³Ì£º£®
£¨1£©x2-2x=0£» 
£¨2£©x£¨x+4£©=-3£¨4+x£©
£¨3£©2x2-3x+1=0      
£¨4£©£¨x+1£©2=4£¨x-2£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈçͼÊÇÓÉÈô¸ÉÕý·½Ìå´î³ÉµÄ¼¸ºÎÌ壬ÇëÔڹ涨µÄÍø¸ñÖÐÓúÚÉ«¸Ö±Ê»òÔ²Öé±Ê»­³ö´ÓÕýÃæ£¬ÉÏÃæ£¬×óÃæ¿´µ½µÄÊÓͼ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®°Ñ-6+£¨-7£©+£¨-2£©-£¨-9£©Ð´³ÉÊ¡ÂԼӺźÍÀ¨ºÅµÄºÍµÄÐÎʽΪ-6-7-2+9£¬¶Á×÷-6¼õ7¼õ2¼Ó9»ò-6£¬-7£¬-2µÄºÍÓë9µÄºÍ£¨ÌîÁ½ÖÖ²»Í¬µÄ¶Á·¨£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®°´ÒªÇó½âÏÂÁÐÒ»Ôª¶þ´Î·½³Ì£º
£¨1£©x2-8x+12=0 £¨Åä·½·¨£©          
£¨2£©x2+4x-5=0£¨¹«Ê½·¨£©
£¨3£©£¨x+4£©2=5£¨x+4£©£¨Êʵ±µÄ·½·¨£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬Ïß¶ÎABÁ½¸ö¶ËµãµÄ×ø±ê·Ö±ðÊÇA£¨6£¬4£©£¬B£¨8£¬2£©£¬ÒÔÔ­µãOÎªÎ»ËÆÖÐÐÄ£¬ÔÚµÚÒ»ÏóÏÞÄÚ½«Ïß¶ÎABËõСΪԭÀ´µÄ$\frac{1}{2}$ºóµÃµ½Ïß¶ÎCD£¬Ôò¶ËµãCµÄ×ø±êΪ£¨3£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬D¡¢EÊÇ¡÷ABCÄÚÁ½µã£¬ADƽ·Ö¡ÏBAC£¬¡ÏEBC=¡ÏE=60¡ã£¬ÈôBE=10cm£¬DE=2cm£¬ÔòBC=12cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º
£¨1£©$\frac{1}{2}$a-2£¨a-$\frac{1}{3}$b2£©+£¨-$\frac{3}{2}$a+$\frac{1}{3}$b2£©£¬ÆäÖÐa=-2£¬b=$\frac{2}{3}$£»
£¨2£©7x2y-[6xy2-5£¨xy2+$\frac{3}{4}$x2y£©-$\frac{2}{3}$xy2]-xy2£¬ÆäÖÐx=2£¬y=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸