精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC=10cm,BC=16cm,DE=4cm.动线段DE(端点D从点B开始)沿BC边以1cm/s的速度向点C运动,当端点E到达点C时运动停止.过点E作EF∥AC交AB于点F(当点E与点C重合时,EF与CA重合),连接DF,设运动的时间为t秒(t≥0).
(1)直接写出用含t的代数式表示线段BE、EF的长;
(2)在这个运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由;
(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积.

【答案】分析:(1)由BD=tcm,DE=4cm,可得BE=BD+DE=(t+4)cm,又由EF∥AC,即可得△BEF∽△BAC,然后根据相似三角形的对应边成比例,即可求得EF的长;
(2)分三种情况讨论:①当DF=EF时,②当DE=EF时,③当DE=DF时,利用等腰三角形的性质与相似三角形的判定与性质,即可求得答案;
(3)首先设P是AC的中点,连接BP,可证得点B,N,P共线,即可得点N沿直线BP运动,MN也随之平移,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形,然后求得?PQST的面积即为MN所扫过的面积.
解答:解:(1)∵BD=tcm,DE=4cm,
∴BE=BD+DE=(t+4)cm,
∵EF∥AC,
∴△BEF∽△BCA,
∴EF:CA=BE:BC,
即EF:10=(t+4):16,
解得:EF=(t+4)(cm);

(2)分三种情况讨论:
①如图1,∵当DF=EF时,
∴∠EDF=∠DEF,
∵AB=AC,
∴∠B=∠C,
∵EF∥AC,
∴∠DEF=∠C,
∴∠EDF=∠B,
∴点B与点D重合,
∴t=0;
②如图2,当DE=EF时,
则4=(t+4),
解得:t=
③如图3,∵当DE=DF时,有∠DFE=∠DEF=∠B=∠C,
∴△DEF∽△ABC.


解得:t=
综上所述,当t=0、秒时,△DEF为等腰三角形.

(3)如图4,设P是AC的中点,连接BP,
∵EF∥AC,
∴△FBE∽△ABC.


又∵∠BEN=∠C,
∴△NBE∽△PBC,
∴∠NBE=∠PBC.
∴点B,N,P共线,
∴点N沿直线BP运动,MN也随之平移.
如图5,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形.
∵M、N分别是DF、EF的中点,
∴MN∥DE,且ST=MN=DE=2.
分别过点T、P作TK⊥BC,垂足为K,PL⊥BC,垂足为L,延长ST交PL于点R,则四边形TKLR是矩形,
∵当t=0时,EF=(0+4)=,TK=EFsin∠DEF==
当t=12时,EF=AC=10,PL=AC•sin∠C=•10•=3.
∴PR=PL-RL=PL-TK=3-=
∴S平行四边形PQST=ST•PR=2×=
∴整个运动过程中,MN所扫过的面积为cm2
点评:此题考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形中位线的性质、平行四边形的性质以及矩形的判定与性质等知识.此题综合性很强,难度较大,注意掌握分类讨论思想、方程思想与数形结合思想的应用,注意掌握辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案