| A. | ∠CAD=40° | B. | ∠ACD=70° | C. | 点D为△ABC的外心 | D. | ∠ACB=90° |
分析 由题意可知直线MN是线段BC的垂直平分线,故BN=CN,∠B=∠C,故可得出∠CDA的度数,根据CD=AD可知∠DCA=∠CAD,故可得出∠CAD的度数,进而可得出结论.
解答 解:∵由题意可知直线MN是线段BC的垂直平分线,
∴BD=CD,∠B=∠BCD,
∵∠B=20°,
∴∠B=∠BCD=20°,
∴∠CDA=20°+20°=40°.
∵CD=AD,
∴∠ACD=∠CAD=$\frac{180°-40°}{2}$=70°,
∴A错误,B正确;
∵CD=AD,BD=CD,
∴CD=AD=BD,
∴点D为△ABC的外心,故C正确;
∵∠ACD=70°,∠BCD=20°,
∴∠ACB=70°+20°=90°,故D正确.
故选A.
点评 本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com