【题目】甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:
(1)甲车出发多长时间后被乙车追上?
(2)甲车与乙车在距离A地多远处迎面相遇?
(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?
【答案】
(1)解:由图知,可设甲车由A地前往B地的函数解析式为s=kt,
将(2.4,48)代入,解得k=20,所以s=20t,
由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时, (小时)即甲车出发1.5小时后被乙车追上
(2)解:由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,
将(1.0,0)和(1.5,30)代入,得 ,解得 ,
所以s=60t﹣60,当乙车到达B地时,s=48千米.代入s=60t﹣60,得t=1.8小时,
又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,
将(1.8,48)代入,得48=﹣30×1.8+n,解得n=102,
所以s=﹣30t+102,当甲车与乙车迎面相遇时,有﹣30t+102=20t
解得t=2.04小时代入s=20t,得s=40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇;
(3)解:当乙车返回到A地时,有﹣30t+102=0,解得t=3.4小时,
甲车要比乙车先回到A地,速度应大于 (千米/小时)
【解析】(1)由图像可知,甲车由A地前往B地的函数是正比例函数,且图像过点(2.4,48),设函数解析式为s=kt,将点(2.4,48)代入解析式可求出k的值;根据图像的信息得,在距A地30千米处,乙车追上甲车,把s=30代入所求解析式即可求解。
(2)由图像可知,乙车由A地前往B地的函数是一次函数,且过点(1.0,0)和(1.5,30),设函数解析式为s=pt+m,将点(1.0,0)和(1.5,30)代入s=pt+m,得到关于p、m的方程组,解这个方程组即可求得p、m的值,即得乙车的解析式,当甲车与乙车迎面相遇时,两车的距离相等,于是可得关于t的方程pt+m=kt,再将求出的t的值代入所求的任意一个解析式中即可求出两车迎面相遇时与A地的距离。
(3)当乙车返回到A地时,乙车与A地的距离s=0,即pt+m=0,求出t的值,则乙车的速度可求,而甲车要比乙车先回到A地,那么甲车的速度只要大于乙车的速度即可。
科目:初中数学 来源: 题型:
【题目】某游泳馆的游泳池长50米,甲、乙二人分别在游泳池相对的A、B两边同时向另一边游去,其中s表示与A边的距离,t表示游泳时间,如图,l1 , l2分别表示甲、乙两人的s与t的关系.
(1)l1表示谁到A边的距离s与游泳时间t的关系;
(2)甲、乙哪个速度快?
(3)游泳多长时间,两人相遇?
(4)t=30秒时,两人相距多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是( )
A. 2
B.﹣2
C.4
D.﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是个;第n个图形中三角形的个数是个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的正方形网格中,网格线的交点称为格点,已知A,B是两格点,若C也是格点,且使得△ABC为等腰三角形,则点C的个数是( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com