精英家教网 > 初中数学 > 题目详情

已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.

(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.

(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.

(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

 

 

【答案】

解:(1)∵D(-8,0),∴B点的横坐标为-8,代入中,得y=-2.

∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2).

从而

(2)∵N(0,-n),B是CD的中点,A、B、M、E四点均在双曲线上,

,B(-2m,-),C(-2m,-n),E(-m,-n).

 S矩形DCNO,S△DBO=,S△OEN =

 ∴S四边形OBCE= S矩形DCNO-S△DBO- S△OEN=k.∴

由直线及双曲线,得A(4,1),B(-4,-1),

∴C(-4,-2),M(2,2).

设直线CM的解析式是,由C、M两点在这条直线上,得

   解得

∴直线CM的解析式是

(3)如图,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1、M1

            

 设A点的横坐标为a,则B点的横坐标为-a.于是

 

  同理

【解析】(1)根据B点的横坐标为-8,代入中,得,得出B点的坐标,即可得出A点的坐标,再根据求出即可;

(2)根据,即可得出k的值,进而得出B,C点的坐标,再求出解析式即可.

分别作轴,轴,垂足分别为,设A点的横坐标为,则B点的横坐标为,于是,同理,即可得到结果。

 

练习册系列答案
相关习题

科目:初中数学 来源:2012届江苏泰兴市黄桥初级中学八年级下期中数学试卷(带解析) 题型:解答题

已知双曲线  与直线  相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线 上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.
【小题1】若点D坐标是(-8,0),求A、B两点坐标及k的值.
【小题2】若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
【小题3】在(2)的条件下,若P为x轴上一点,是否存在△OMP为等腰三角形?若存在,写出P点坐标;若不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源:2008年初中毕业升学考试(江苏南通卷)数学(带解析) 题型:解答题

已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-反比例函数与一次函数的图像(带解析) 题型:解答题

已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,﹣n)作NC∥x轴交双曲线于点E,交BD于点C.

(1)若点D坐标是(﹣8,0),求A、B两点坐标及k的值.
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省镇江市丹徒区中考适应性考试数学试卷(解析版) 题型:填空题

已知双曲线与直线y=x-相交于点P(a,b),则   

查看答案和解析>>

同步练习册答案