【题目】已知:如图1,将两块全等的含30角的直角三角板按图所示的方式放置,∠BAC=∠B1A1C=30°,点B,C,B1在同一条直线上.
(1)求证:AB=2BC
(2)如图2,将△ABC绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.当α等于多少度时,AB与A1B1垂直?请说明理由.
(3)如图3,当△ABC绕点C顺时针方向旋转至如图所示的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.
【答案】(1)证明见解析
(2)当旋转角等于30°时,AB与A1B1垂直.
(3)理由见解析
【解析】试题分析:(1)由等边三角形的性质得AB=BB1,又因为BB1=2BC,得出AB=2BC;
(2) 利用AB与A1B1垂直得∠A1ED=90°,则∠A1DE=90°-∠A1=60°,根据对顶角相等得∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A1CB=180°-∠BDC-∠B=60°,所以∠ACA1=90°-∠A1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB与A1B1垂直;
(3)由于AB∥CB1,∠ACB1=90°,根据平行线的性质得∠ADC=90°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到CD=AC,再根据旋转的性质得AC=A1C,所以CD=A1C,则A1D=CD.
试题解析:
(1)∵△ABB1是等边三角形;
∴ AB=BB1
∵ BB1=2BC
∴AB=2BC
(2)解:当AB与A1B1垂直时,∠A1ED=90°,
∴∠A1DE=90°-∠A1=90°-30°=60°,
∵∠B=60°,∴∠BCD=60°,
∴∠ACA1=90°-60°=30°,
即当旋转角等于30°时,AB与A1B1垂直.
(3)∵AB∥CB1,∠ACB1=90°,
∴∠CDB=90°,即CD是△ABC的高,
设BC= ,AC= ,则由(1)得AB=,A1C= ,
∵,
即
∴,即CD=A1C,
∴A1D=CD.
科目:初中数学 来源: 题型:
【题目】某班10名学生体育测试的成绩(单位:分)分别为:58,60,59,52,58,55,57,58,49,57,则这组数据的众数、中位数分别为( )
A.58,57.5B.57,57.5C.58,58D.58,57
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校2013(3)班的四个小组中,每个小组同学的平均身高大致相同,若: 第一小组同学身高的方差为1.7,第二小组同学身高的方差为1.9,
第三小组同学身高的方差为2.3,第四小组同学身高的方差为2.0,
则在这四个小组中身高最整齐的是第小组.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE//OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2-12+36+|n-2m|=0.
(1)求A、B两点的坐标?
(2)若点D为AB中点,求OE的长?
(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我省某地区为了了解2016年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)
(1)填空:该地区共调查了 名九年级学生;
(2)将两幅统计图中不完整的部分补充完整;
(3)若该地区2016年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;
(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com