【题目】如图1所示,(1)已知D是等腰△ABC底边BC上一点,DE∥AC,交AB于点E.DF∥AB,交AC于点F.请你探究DE、DF、AB之间的关系,并说明理由.(2)如图2所示,已知D是等腰△ABC底边BC延长线上一点,DE∥AC,交BA的延长线于点E.DF∥AB,交AC的延长线于点F.请你探究DE、DF、AB之间的关系,并说明理由.
图1 图2
【答案】(1)DE+DF=AB(2)若D在BC的延长线上,则(1)中的结论不成立,正确结论是DE-DF=AB
【解析】
(1)首先根据两组对边互相平行的四边形是平行四边形判定出四边形AEDF是平行四边形,进而得到DF=AE,然后证明BE=DE,即可得到DE+DF=AB;
(2)首先根据两组对边互相平行的四边形是平行四边形判定出四边形AFDE是平行四边形,进而得到DF=AE,DE=AF,又根据△ABC是等腰三角形得∠B=∠ACB,利用平行线性质得∠FCD=∠FDC,即可得出DE-DF=AB.
解:(1)DE+DF=AB.
理由如下:因为DE∥AC,DF∥AB,
所以由平行四边形的定义可得四边形AEDF是平行四边形,
所以DF=AE.
又因为△ABC是等腰三角形,
所以∠B=∠C.
因为DE∥AF,
所以∠C=∠EDB.
所以∠B=∠EDB.
所以△BDE是等腰三角形,
所以BE=DE,
所以DE+DF=BE+AE=AB.
(2)若D在BC的延长线上,则(1)中的结论不成立,正确结论是DE-DF=AB.
理由如下:因为DE∥AC,DF∥AB,
所以四边形AFDE是平行四边形.
所以DF=AE,DE=AF.
因为△ABC是等腰三角形,
所以∠B=∠ACB.
又因为∠ACB=∠FCD,
所以∠B=∠FCD.
又因为AB∥DF,
所以∠B=∠FDC.
所以∠FCD=∠FDC,
所以DF=FC,
所以DE-DF=AF-CF=AC=AB.
科目:初中数学 来源: 题型:
【题目】已知某个图形是按下面方法连接而成的:(0,0)→(2,0);(1,0)→(0,﹣1);(1,1)→(1,﹣2);(1,0)→(2,﹣1).
(1)请连接图案,它是一个什么汉字?
(2)作出这个图案关于y轴的轴对称图形,并写出新图案相应各端点的坐标,你得到一个什么汉字?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小学开展4种课外兴趣小组活动,分别为A;绘画:B;机器人:C;跳舞:D;吉他.每个学生都要选取一个兴趣小组参与活动,小明对同学们选取的活动形式进行了随机抽样调查,根据调查统计结果,绘制了如下的统计图:
(1)本次调查学生共 人,a= ,并将条形图补充完整;
(2)如果该校有学生500人,则选择“机器人”活动的学生估计有多少人?
(3)学校让每班同学在A,B,C,D四种活动形式中,随机抽取两种开展活动,请用树状图或列表法的方法,求每班抽取的两种形式恰好是“绘画”和“机器人”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=x与反比例函数y=k/x在第一象限内的图象相交于点A(m,3).
(1)求该反比例函数的关系式;
(2)将直线y=x沿y轴向上平移8个单位后与反比例函数在第一象限内的图象相交于点B,连接AB,这时恰好AB⊥OA,求tan∠AOB的值;
(3)在(2)的条件下,在射线OA上存在一点P,使△PAB∽△BAO,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.
(1)求∠MON的大小.
(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD中,E,F是对角线BD上的两点, 如果添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;
(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.
(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP的平分线上一点,若∠AMN=90°,则AM=MN是否成立?若成立,请证明;若不成立,说明理由.
(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2…An“,其它条件不变,请你猜想:当∠An﹣2MN=_____°时,结论An﹣2M=MN仍然成立.(不要求证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com