精英家教网 > 初中数学 > 题目详情

如图,抛物线y1=a(x+2)2+c与y2=数学公式(x-3)2+b交于点A(1,3),且抛物线y1经过原点.过点A作x轴的平行线,分别交两条抛物线于点B,C.则下列结论中,正确的是


  1. A.
    c=4a
  2. B.
    a=1
  3. C.
    当x=0时,y2-y1=4
  4. D.
    2AB=3AC
D
分析:把点A坐标与原点坐标代入y1,求出a、c的值,即可得到函数解析式,把点A坐标代入y2,求出b的值,即可得到函数解析式,判定A、B错误;令x=0,求出y2与y轴的交点,判定C错误;令y=3,求出A、B、C的横坐标,然后求出AB、AC的长,判定D正确.
解答:∵y1=a(x+2)2+c经过点A(1,3)与原点,

解得
∴c=-4a,故A、B选项错误;
y1=(x+2)2-
∵y2=(x-3)2+b经过点A(1,3),
(1-3)2+b=3,
解得b=1,
∴y2=(x-3)2+1,
当x=0时,y=(0-3)2+1=5.5,
此时y2-y1=5.5,故C选项错误;
∵过点A作x轴的平行线,分别交两条抛物线于点B,C,
∴令y=3,则(x+2)2-=3,
整理得,(x+2)2=9,
解得x1=-5,x2=1,
∴AB=1-(-5)=6,
(x-3)2+1=3,
整理得,(x-3)2=4,
解得x1=5,x2=1,
∴AC=5-1=4,
∴2AB=3AC,故D选项正确.
故选D.
点评:本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-x2+2向右平移1个单位得到抛物线y2,则图中阴影部分的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=a(x-m)2与y2关于y轴对称,顶点分别为B、A,y1与y轴的交点为C.若由A,B,C组成的三角形中,tan∠ABC=2.求:
(1)a与m满足的关系式;
(2)如图,动点Q、M分别在y1和y2上,N、P在x轴上,构成矩形MNPQ,当a为1时,请问:
①Q点坐标是多少时,矩形MNPQ的周长最短?
②若E为MQ与y轴的交点,是否存在这样的矩形,使得△CEQ与△QPB相似?若存在,请直接写出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图,抛物线y1=x2-1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.
(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=ax2+bx和直线y2=kx+m相交于点(-2,0)和(1,3),则当y2<y1,时,x的取值范围是
x>1或x<-2
x>1或x<-2

查看答案和解析>>

同步练习册答案