精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为(
A.
B.
C.
D.

【答案】A
【解析】解:过点F作FG⊥AB于点G,
∵∠ACB=90°,CD⊥AB,
∴∠CDA=90°,
∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,
∵AF平分∠CAB,
∴∠CAF=∠FAD,
∴∠CFA=∠AED=∠CEF,
∴CE=CF,
∵AF平分∠CAB,∠ACF=∠AGF=90°,
∴FC=FG,
∵∠B=∠B,∠FGB=∠ACB=90°,
∴△BFG∽△BAC,
=
∵AC=3,AB=5,∠ACB=90°,
∴BC=4,
=
∵FC=FG,
=
解得:FC=
即CE的长为
故选:A.
【考点精析】解答此题的关键在于理解角平分线的性质定理的相关知识,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是(  )

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:

时间x(天)

1≤x<50

50≤x≤90

售价(元/件)

x+40

90

每天销量(件)

200-2x

已知该商品的进价为每件30元,设销售该商品每天的利润为y元。

(1)求出y与x的函数关系式;

(2)问销售该商品第几天时,当天的销售利润最大?最大利润是多少?

(3)该商品在销售过程中,共有多少天每天的销售利润不低于4800元?请直接写出结果。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC=10,∠B=60°,∠C=45°,则点A到BC的距离是( )

A.10﹣5
B.5+5
C.15﹣5
D.15﹣10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值 ﹣1.其中正确的说法有( )个.

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算中,正确的是(  )
A.3a+2b=5ab
B.2a3+3a2=5a5
C.3a2b﹣3ba2=0
D.5a2﹣4a2=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ab,则1a________1b. (填“>”,“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动. 已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).

(1)求CD的长;
(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;
(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案