精英家教网 > 初中数学 > 题目详情
如图△ABC中,AB=8cm,AC=5cm,AD平分∠BAC,且AD⊥CD,E为BC中点,求DE的长.
分析:延长CD交AB于F,利用“角边角”证明△ACD和△AFD全等,根据全等三角形对应边相等可得AF=AC,DF=CD,然后求出BF的长度,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.
解答:解:如图,延长CD交AB于F,
∵AD平分∠BAC,
∴∠CAD=∠FAD,
∵AD⊥CD,
∴∠ADC=∠ADF=90°,
在△ACD和△AFD中,
∠CAD=∠FAD
AD=AD
∠ADC=∠ADF=90°

∴CD=DF,AF=AC=5cm.
∵E为BC中点,BF=AB-AF=8-5=3,
∴DE=
1
2
BF=1.5(cm).
点评:本题考查了三角形的中位线定理,全等三角形的判定与性质,作辅助线构造出全等三角形以及DE为中位线的△BCF是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图△ABC中,AB=AC,BD平分∠ABC,且△ABC∽△BDC,则∠A=
36
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图△ABC中,AB=3,AC=2,BO平分∠ABC,CO平分∠ACB.DE过点O交AB于D,交AC于E,且DE∥BC.则△ADE周长为
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,AB=AC,M是BC中点,D,E分别在AB,AC上,且BD=CE,求证:ME=MD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,
(1)找出图中与△BCE全等的三角形,并说明理由;
(2)求证:AH=2BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图△ABC中,AB=6,AC=6
5
,∠B=90°,点P从A开始沿AB边向点B以1cm/s的速度移动,1秒后点Q从点B开始沿BC边向点C以2cm/s的速度移动,那么Q从B出发,经过
2或3
2或3
秒,△PBQ的面积等于6cm2

查看答案和解析>>

同步练习册答案