精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=AC,P为△ABC内一点,且∠BAP=70°,∠ABP=40°,
(1)求证:△ABP是等腰三角形;
(2)连接PC,当∠PCB=30°时,求∠PBC的度数.

(1)证明:在△PAB中,∵∠BAP=70°,∠ABP=40°,
∴∠APB=180°-∠BAP-∠ABP=70°.
∴∠APB=∠BAP=70°.
∴AB=BP,即△ABP是等腰三角形.

(2)过点A作AD⊥BC于D,交CP延长线于O,连接OB,过点B作BE⊥CP于E,则点E在CO延长线上,
即AD是等腰三角形ABC底边上的高,
∴AD是边BC的垂直平分线,
∴OB=OC,
∴∠OBC=∠OCB=30°,
∵BE⊥CE,
∴∠CEB=90°,
∴∠EBC=90°-30°=60°,
∴∠OBE=60°-30°=30°=∠OBD,
在△OEB和△ODB中

∴△OEB≌△ODB(AAS),
∴OD=OE,BD=BE,
∵∠BEC=∠ADB=90°,
∴在Rt△ABD和Rt△PBE中

∴Rt△ABD≌Rt△PBE(HL),
∴∠BAO=∠BPO,AD=PE,
∵OE=OD,
∴AO=PO,
在△AOB和△POB中

∴△AOB≌△POB(SAS),
∴∠ABO=∠PBO=∠ABP=×40°=20°,
∴∠PBC=30°-20°=10°.
分析:(1)根据三角形内角和定理求出∠APB,得出∠APB=∠BAP,即可得出答案;
(2)过点A作AD⊥BC于D,交CP延长线于O,连接OB,过点B作BE⊥CP于E,证△OEB≌△ODB,推出OD=OE,BD=BE,证Rt△ABD≌Rt△PBE,推出∠BAO=∠BPO,AD=PE,求出AO=PO,证△AOB≌△POB,求出∠ABO=∠PBO=∠ABP=20°,即可求出答案.
点评:本题考查了全等三角形的性质和判定,等腰三角形的性质和判定的应用,主要考查学生的推理能力,综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案