精英家教网 > 初中数学 > 题目详情
16.已知P为正方形ABCD的对角线AC上任意一点,求证:PB=PD.

分析 由四边形ABCD是正方形得到AB=AD,∠BAC=∠DAC,证得△BAP≌△DAP,得到PB=PD.

解答 证明:∵四边形ABCD是正方形,
∴AB=AD,∠BAC=∠DAC=45°,
在△BAP和△DAP中,
$\left\{\begin{array}{l}{AB=AD}\\{∠BAC=∠DAC}\\{AP=AP}\end{array}\right.$,
∴△BAP≌△DAP(SAS),
∴PB=PD.

点评 本题主要考查了正方形,全等三角形的判定,通过构建全等三角形来得出相关的边和角相等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.下列各项结论中错误的是(  )
A.二元一次方程x+2y=2的解可以表示为$\left\{\begin{array}{l}{x=m}\\{y=1-\frac{m}{2}}\end{array}\right.$ (m是实数)
B.若$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$是二元一次方程组$\left\{\begin{array}{l}{3x+2y=m}\\{nx-y=1}\end{array}\right.$的解,则m+n的值为0
C.设一元二次方程x2+3x-4=0的两根分别为m、n,则m+n的值为-3
D.若-5x2ym与xny是同类项,则m+n的值为3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,已知,如图∠1=∠2=40°,∠3=80°,则∠BAC=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算
(1)(-2)-1+(-$\frac{1}{2}$)-3+(-$\frac{1}{2}$)0           
(2)(-$\frac{1}{3}$ax4y32÷(-$\frac{1}{18}$ax2y)•8a2y
(3)(2a+3b-c)(2a-3b+c)          
(4)[(3x-2)2-2(x+2)(x+1)]÷(-2x)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列语句中,正确的个数是(  )
(1)等腰三角形的对称轴是底边的垂直平分线;(2)菱形的对角线相等且互相平分;(3)四个内角都相等的四边形是矩形;(4)顺次连接对角线相等的四边形各边中点所得的四边形是菱形;(5)对角线互相垂直且相等的四边形是正方形.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.观察下列等式:
①$\frac{1}{\sqrt{3}+1}$=$\frac{\sqrt{3}-1}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{\sqrt{3}-1}{2}$;
②$\frac{1}{\sqrt{5}+\sqrt{3}}$=$\frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$=$\frac{\sqrt{5}-\sqrt{3}}{2}$;
③$\frac{1}{\sqrt{7}+\sqrt{5}}$=$\frac{\sqrt{7}-\sqrt{5}}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})}$=$\frac{\sqrt{7}-\sqrt{5}}{2}$
…回答下列问题:
(1)利用你观察到的规律,化简:$\frac{1}{5+\sqrt{23}}$
(2)计算:$\frac{1}{1+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{5}}$+$\frac{1}{\sqrt{5}+\sqrt{7}}$+…+$\frac{1}{3\sqrt{11}+\sqrt{101}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.若(3x-1)(2-mx)=-3x2+7x-n,则m-n=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.某商品进价为80元,按进价提高50%后标价,打折销售后仍可获利20%,问此商品打的折数是八.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图平面直角坐标系xOy中,C在x轴上,四边形OABC为菱形,且A点坐标
为(-3,4),过A、C的直线交y轴于点M,连接BM
(1)求直线AC的解析式
(2)一动点P从A出发,以每秒2个单位长度沿A→B→C向C点运动,设运动过程中△PBM的面积为S,运动时间为t(秒),试求出S关于t的函数关系式.
(3)在(2)的条件下,试求出当t为何值时,△PBM的面积的最大值?最大值是多少?

查看答案和解析>>

同步练习册答案