精英家教网 > 初中数学 > 题目详情
某直角三角形三条边的平方和为800,则这个直角三角形的斜边长为
20
20
分析:直角三角形中两直角边的平方和等于斜边的平方,已知三边的平方和可以求出斜边的平方,根据斜边的平方可以求出斜边长.
解答:解:∵在直角三角形中斜边的平方等于两直角边的平方和,
又∵已知三边的平方和为800,则斜边的平方为三边平方和的一半,
即斜边的平方为,
800
2
=400,
∴斜边长=
400
=20,
故答案为20.
点评:本题考查了勾股定理在直角三角形中的灵活应用,考查了勾股定理的定义,本题中正确计算斜边长的平方是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料并解答问题:
我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:
精英家教网
(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树
 
棵.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:

  定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.

  结论:在探讨过程中,有三位同学得出如下结果:

       甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、____个、_____个大小不同的内接正方形.

       乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.

       丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.

任务:(1)填充甲同学结论中的数据;

       (2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;

       (3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明。

(如图,设锐角△ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为.若你对本小题证明有困难,可直接用“”这个结论,但在证明正确的情况下扣1分).

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(江西卷)数学 题型:解答题

某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:
定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.
结论:在探讨过程中,有三位同学得出如下结果:
甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、________个、________个大小不同的内接正方形.
乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.
丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.
任务:(1)填充甲同学结论中的数据;
(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;
(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明
(如图,设锐角△ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为.若你对本小题证明有困难,可直接用”这个结论,但在证明正确的情况下扣1分).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=数学公式(m2-1)和c=数学公式(m2+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:

(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树______棵.

查看答案和解析>>

同步练习册答案