精英家教网 > 初中数学 > 题目详情
是二次函数,则m=      
-2.

试题分析:根据二次函数的定义得出m2-2=2,再利用2-m≠0,求出m的值即可.
试题解析:若函数是二次函数,
则m2-2=2,再利用m≠2,
故m=-2
解得:m=-2.
考点: 1.二次函数的定义;2.解一元二次方程-因式分解法.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).

(1)求抛物线的解析式;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.

(1)求此抛物线的解析式;
(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;
(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=3x2向左平移2个单位后得到的抛物线的解析式为(  )
A.y=3(x+2)2B.y=3(x-2)2 C.y=3x2+2D.y=3x2-2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

请写出一个图象为开口向下,并且与轴交于点的二次函数表达式     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列四个结论

①a、b同号
②当x=1和x=3时函数值相等
③4a+b=0
④当y=时x的值只能取0
其中正确的个数
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB为半圆的直径,点P为AB上一动点.动点P从点A 出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为(   )


A.                  B.                C.             D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线的对称轴是直线x=1,且经过点P,则的值为(  )
A.2B.1C.0D.

查看答案和解析>>

同步练习册答案