精英家教网 > 初中数学 > 题目详情

如图:已知E、F分别是正方形的边AB、AD中点,DE,CF相交于P,DE的延长线交CB的延长线于G,若正方形的边长为6cm,求PB的长.

解:∵四边形ABCD是正方形,
∴AB=AD=CD,∠A=∠ADC=90°,
∵E、F分别是边AB、AD的中点,
∴AE=BE=DF,
∵在△ADE和△DCF中,

∴△ADE≌△DCF(SAS),
∴∠ADE=∠DCF,
∵∠ADE+∠CDE=∠ADC=90°,
∴∠DCF+∠CDE=90°,
∴∠CPD=180°-90°=90°,
∴∠CPG=90°,
∵G在CB的延长线上,
∴∠EBG=180°-∠ABC=180°-90°=90°,
∴∠A=∠EBG,
∵在△ADE和△BGE中,

∴△ADE≌△BGE(ASA),
∴AD=BG,
∴PB是△PCG的中线,
∵正方形的边长为6cm,
∴CG=6+6=12cm,
∴PB=CG=×12=6cm.
分析:根据正方形的性质可得AB=AD=CD,∠A=∠ADC=90°,再根据中点定义求出AE=DF,然后利用“边角边”证明△ADE和△DCF全等,根据全等三角形对应角相等可得∠ADE=∠DCF,然后求出∠CDP=90°,再利用“角边角”证明△ADE和△BGE全等,根据全等三角形对应边相等可得AD=BG,从而求出PB是△PCG的中线,然后根据直角三角形斜边上的中线等于斜边的一半解答.
点评:本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,熟练掌握各性质并求出三角形全都是解题的关键,难点在于要二次证明三角形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,已知E,F分别为平行四边形ABCD边AD,AB上的两点,则图形中与△BEC的面积相等的三角形有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图:已知边长分别为a、b的正方形纸片和边长为a、b的长方形纸片若干块.
(1)利用这些纸片(必须每种纸片都要用到)拼成一个长方形(要求:用有刻度的三角板画图,所用的图片与题目中提供的相应图片全等,拼得的长方形的长和宽不相等);
(2)根据你所拼的图形,写出一个与之对应的多项式因式分解的式子.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知C、D分别在OA、OB上,并且OA=OB,OC=OD,AD和BC相交于E,则图中全等三角形的对数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知M、N分别为线段AC、BC的中点,且C是线段MB的中点,线段MN=6cm,则线段AM=
4
4
cm,BN=
2
2
cm.

查看答案和解析>>

同步练习册答案