【题目】如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.
(1)求证:四边形ACEF是平行四边形;
(2)若四边形ACEF是菱形,求∠B的度数.
【答案】(1)证明参见解析;(2)30°.
【解析】
试题分析:(1)如下图:根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得∠F=∠3,因为∠1=∠3,即可求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形求证;(2)根据菱形的四条边都相等可得AC=CE,然后求出AC=CE=AE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°求出∠CAE=60°,然后根据直角三角形两锐角互余解答.
试题解析:(1)∵∠ACB=90°,E是BA的中点,直角三角形斜边上的中线等于斜边的一半,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形(一组对边平行且相等的四边形是平行四边形);(2)∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.故∠B=30°.
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 整数就是正整数和负整数 B. 有理数中不是负数就是正数 C. 零是自然数,但不是正整数 D. 正数与负数互为相反数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察长方体,判断它的三视图是( )
A. 三个大小不一样的长方形,但其中有两个可能大小一样 B. 三个正方形
C. 三个一样大的长方形 D. 两个长方形,一个正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】P1(x1 , y1),P2(x2 , y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是( )
A.y1>y2
B.y1<y2
C.当x1<x2时,y1>y2
D.当x1<x2时,y1<y2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列长度的三条线段能组成三角形的是( )
A.1cm,2cm,3.5cmB.4cm,5cm,9cm
C.5cm,8cm,15cmD.6cm,8cm,13cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com