精英家教网 > 初中数学 > 题目详情

如图,四边形AOBC是正方形,点C的坐标是(数学公式,0),动点P从点O出发,沿折线OACB方向匀速运动,另一动点Q从点C出发,沿折线CBOA方向匀速运动.
(1)求点A的坐标点和正方形AOBC的面积;
(2)将正方形绕点O顺时针旋转45°,求旋转后的正方形与原正方形的重叠部分的面积;
(3)若P的运动速度是1个单位/每秒,Q的运动速度是2个单位/每秒,P、Q两点同时出发,当Q运动到点A 时P、Q同时停止运动.设运动时间为t秒,是否存在这样的t值,使△OPQ成为等腰三角形?若存在,请求出Q点的坐标;若不存在,请说明理由.

解:(1)连接AB,与OC交于点D,
由△OCA为等腰Rt△,得AD=OD=OC=2
∴点A的坐标为(2,2),
正方形AOBC的面积16

(2)旋转后可得OA′=OB=4,
∴A′C=4-4,而可知∠CA′E=90°,∠OCB=45°,
∴△A′EC是等腰直角三角形,
∴A′E=A′C=4-4,
∴S四边形OA’EB=S△OBC-S△A’EC=16-16.

(3)存在,从Q点在不同的线段上运动情况,可分为三种:
①当Q点在BC上时,使OQ=QP,QM为OP的垂直平分线,
则有OP=2OM=2BQ,而OP=t,BQ=4-2t,

∴t=2(4-2t),
∴t=
∴Q(,-
②当Q点在OB上时,使OQ=OP,而OP=t,OQ=8-2t,
∴t=8-2t,
∴t=
∴Q(,-
③当Q点在OA上时,使OQ=PQ,t2-24t+96=0,(舍去),t=12-4
∴Q(4,4
(注:其他解法只要正确,同样相应给分)
分析:(1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;
(2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;
(3)存在,从Q点在不同的线段上运动情况,可分为三种:
①当Q点在BC上时,使OQ=QP,则有OP=2BQ,而OP=t,BQ=4-2t,列式可得出t;
②当Q点在OB上时,使OQ=OP,而OP=t,OQ=8-2t,列式可得出t;
③当Q点在OA上时,使OQ=PQ,列式可得出t.
点评:本题是一道综合题目,考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形AOBC为直角梯形,OC=
5
,OB=5AC,OC所在的直线方程为y=2x,平行于O精英家教网C的直线l为:y=2x+t,l由A点平移到B点时,l与直角梯形AOBC两边所围成的三角形的面积记为S.
(1)求点C的坐标;
(2)求t的取值范围;
(3)求出S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形AOBC为直角梯形,OC=
5
,OB=5AC,OC所在的直线的函数解析精英家教网式为y=2x,平行于OC的直线m的解析式为y=2x+t.直线m由A点平移到B点时,m与直角梯形AOBC两边所围成的三角形的面积记为S.
(1)求点C的坐标及t的取值范围;
(2)求S与t之间的函数关系式及当S=1.8时,t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,四边形AOBC中,∠AOB=72°,∠ACB=36°,OA=OB,AC=BC.以O中心,按顺时针方向,将四边形AOBC旋转72°,请画出依次旋转四次的图形(含阴影部分)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•山东)如图,四边形AOBC是菱形,点B的坐标为(4,0),∠AOB=60°.点P从点A开始以每秒1个单位长度的速度沿AC向点C移动,同时,点Q从点O开始以每秒a(1≤a<3)个单位长度的速度沿射线OB向右移动.设t(0<t≤4)秒后,PQ交OC于点R.
(1)当a=2,OR=8(2
3
-3)
时,求t的值及经过P、Q两点的直线的解析式;
(2)当a为何值时,以O、Q、R为顶点的三角形和以O、B、C为顶点的三角形能够相似?当a为何值时,以O、Q、R为顶点的三角形和以O、B、C为顶点的三角形不能够相似?请给出结论,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形AOBC中,AC=BC,∠A+∠OBC=180°,CD⊥OA于D.
(1)求证:OC平分∠AOB; 
(2)若OD=3DA=6,求OB的长.

查看答案和解析>>

同步练习册答案