精英家教网 > 初中数学 > 题目详情

如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥CD,BD=CD,CE平分∠BCD,交AB于点E,交BD于点H,EN∥DC交BD于点N,连接DE.下列结论:
①BH=BE; ②EH=DH; ③tan∠EDB=数学公式;④数学公式
其中正确的有


  1. A.
    ①③④
  2. B.
    ②③④
  3. C.
    ①④
  4. D.
    ①②③
C
分析:首先由BD⊥CD,BD=CD,可求得∠DBC=∠DCB=45°,又由CE平分∠BCD,∠ABC=90°,根据三角形外角的性质与直角三角形的性质,即可求得∠BEH=∠BHE=67.5°,然后由等角对等边,即可求得①正确;由∠ADB=45°,∠EDB<∠ADB,即可得tan∠EDB<,可得③错误,利用排除法即可求得答案.
解答:∵BD⊥CD,BD=CD,
∴∠DBC=∠DCB=45°,
∵∠ABC=90°,
∴∠ABD=45°,
∵CE平分∠BCD,
∴∠DCE=∠BCE=22.5°,
∴∠BHE=∠DBC+∠BCE=67.5°,∠BEC=90°-∠BCE=67.5°,
∴∠BHE=∠BEC,
∴BH=BE;
故①正确;
∵∠HED与∠HDE的大小无法确定,
故EH不一定等于EH,
故②错误;
∵∠ADB=90°-∠ABD=45°,
∴∠EDB<45°,
∴tan∠EDB<
故③错误;
∵EN∥CD,
∴∠CEN=∠DCE=22.5°,
∵∠BHE=67.5°,
∵∠ABD=90°-∠CBD=45°.
∴∠BEH=∠BHE=67.5°,
∴BE=BH,
∴∠ENH=180°-∠CEN-∠EHN=90°,
∴∠ENH=∠ABC,∠NEH=∠BCE=22.5°,
∴△ENH∽△CBE,




故④正确.
故选C.
点评:此题考查了相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、等腰三角形的判定与性质以及特殊角三角函数等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案