C
分析:首先由BD⊥CD,BD=CD,可求得∠DBC=∠DCB=45°,又由CE平分∠BCD,∠ABC=90°,根据三角形外角的性质与直角三角形的性质,即可求得∠BEH=∠BHE=67.5°,然后由等角对等边,即可求得①正确;由∠ADB=45°,∠EDB<∠ADB,即可得tan∠EDB<

,可得③错误,利用排除法即可求得答案.
解答:∵BD⊥CD,BD=CD,
∴∠DBC=∠DCB=45°,
∵∠ABC=90°,
∴∠ABD=45°,
∵CE平分∠BCD,
∴∠DCE=∠BCE=22.5°,
∴∠BHE=∠DBC+∠BCE=67.5°,∠BEC=90°-∠BCE=67.5°,
∴∠BHE=∠BEC,
∴BH=BE;
故①正确;
∵∠HED与∠HDE的大小无法确定,
故EH不一定等于EH,
故②错误;
∵∠ADB=90°-∠ABD=45°,
∴∠EDB<45°,
∴tan∠EDB<

;
故③错误;
∵EN∥CD,
∴∠CEN=∠DCE=22.5°,
∵∠BHE=67.5°,
∵∠ABD=90°-∠CBD=45°.
∴∠BEH=∠BHE=67.5°,
∴BE=BH,
∴∠ENH=180°-∠CEN-∠EHN=90°,
∴∠ENH=∠ABC,∠NEH=∠BCE=22.5°,
∴△ENH∽△CBE,

∴

,
∴

,
∵

,
∴

.
故④正确.
故选C.
点评:此题考查了相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、等腰三角形的判定与性质以及特殊角三角函数等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.