精英家教网 > 初中数学 > 题目详情

【题目】如图,反比例函数y= (x>0)的图象与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,若OC=2BD,则实数k的值为(
A.
B.
C.
D.

【答案】A
【解析】解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,
设OC=2x,则BD=x,
在Rt△OCE中,∠COE=60°,
则OE=x,CE= x,
则点C坐标为(x, x),
在Rt△BDF中,BD=x,∠DBF=60°,
则BF= x,DF= x,
则点D的坐标为(5﹣ x, x),
将点C的坐标代入反比例函数解析式可得:k= x2
将点D的坐标代入反比例函数解析式可得:k= x﹣ x2
x2= x﹣ x2
解得:x1=2,x2=0(舍去),
故k= x2= ×4=4
故选A.
【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=kx+b的图象与反比例函数y2= 的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).
(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1 , S2 , 则|S1﹣S2|=(平方单位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人驾车从乡村进城.各时间段的行驶速度如图所示.当时,其行驶路程与时间之间的函数表达式是________,当时,其行驶路程与时间之间的函数表达式是________,当时,其行驶路程与时间之间的函数表达式是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数 (k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=

(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是(
A.
B.
C.1
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若SDEC=9,则SBCF=(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,网格线的交点叫格点,格点P是∠AOB的边OB上的一点(请利用网格作图,保留作图痕迹).
(1)过点P画OB的垂线,交OA于点C;
(2)线段的长度是点O到PC的距离;
(3)PC<OC的理由是
(4)过点C画OB的平行线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为开展体育大课间活动,需要购买篮球与足球若干个.已知购买2个篮球和3个足球共需要380元;购买4个篮球和5个足球共需要700元.
(1)求购买一个篮球、一个足球各需多少元?
(2)若体育老师带了6000元去购买这种篮球与足球共80个.由于数量较多,店主给出“一律打九折”的优惠价,那么他最多能购买多少个篮球?

查看答案和解析>>

同步练习册答案