17£®Èçͼ1£¬ÒÑÖªÅ×ÎïÏßy=$\frac{3}{8}$x2-$\frac{3}{4}$x-3ÓëxÖá½»ÓÚAºÍBÁ½µã£¨µãAÔÚµãBµÄ×ó²à£©£¬ÓëyÖáÏཻÓÚµãC£¬¶¥µãΪD£®
£¨1£©Çó³öµãA£¬B£¬DµÄ×ø±ê£»
£¨2£©Èçͼ1£¬ÈôÏ߶ÎOBÔÚxÖáÉÏÒƶ¯£¬ÇÒµãO£¬BÒƶ¯ºóµÄ¶ÔÓ¦µãΪO¡ä£¬B¡ä£®Ê×β˳´ÎÁ¬½ÓµãO¡ä¡¢B¡ä¡¢D¡¢C¹¹³ÉËıßÐÎO¡äB¡äDC£¬µ±ËıßÐÎO¡äB¡äDCµÄÖܳ¤ÓÐ×îСֵʱ£¬ÔÚµÚËÄÏóÏÞÕÒÒ»µãP£¬Ê¹µÃ¡÷PB¡äDµÄÃæ»ý×î´ó£¿²¢Çó³ö´ËʱPµãµÄ×ø±ê£®
£¨3£©Èçͼ2£¬ÈôµãMÊÇÅ×ÎïÏßÉÏÒ»µã£¬µãNÔÚyÖáÉÏ£¬Á¬½ÓCM¡¢MN£®µ±¡÷CMNÊÇÒÔMNΪֱ½Ç±ßµÄµÈÑüÖ±½ÇÈý½ÇÐÎʱ£¬Ö±½Óд³öµãNµÄ×ø±ê£®

·ÖÎö £¨1£©Áîy=0£¬½â·½³Ì¼´¿ÉÇó³öµãA¡¢BµÄ×ø±ê£¬ÀûÓÃÅä·½·¨»ò¶¥µã×ø±ê¹«Ê½¿ÉµÃ¶¥µãDµÄ×ø±ê£»
£¨2£©×÷µãC£¨0£¬-3£©¹ØÓÚxÖáµÄ¶Ô³ÆµãC¡ä£¨0£¬3£©£¬½«µãC¡ä£¨0£¬3£©ÏòÓÒƽÒÆ4¸öµ¥Î»µÃµ½µãC¡å£¨4£¬3£©£¬Á¬½ÓDC¡å£¬½»xÖáÓÚµãB¡ä£¬½«µãB¡äÏò×óƽÒÆ4¸öµ¥Î»µÃµ½µãO¡ä£¬Á¬½ÓCO¡ä£¬CO¡å£¬ÔòËıßÐÎO¡äB¡äC¡äC¡åΪƽÐÐËıßÐΣ¬´ËʱËıßÐÎO¡äB¡äDCÖܳ¤È¡×îСֵ£®ÔÙ¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽÇó³öCD¡¢DC¡åµÄ³¤¶È£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©°´µãMµÄλÖò»Í¬·ÖÁ½ÖÖÇé¿ö¿¼ÂÇ£º¢ÙµãMÔÚÖ±Ïßy=x-3ÉÏ£¬£»¢ÚµãMÔÚÖ±Ïßy=-x-3ÉÏ£¬ÁªÁ¢Ö±ÏßÓëÅ×ÎïÏß½âÎöʽÇó³öµãMµÄ×ø±ê£¬½áºÏµãCµÄ×ø±êÒÔ¼°µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʼ´¿ÉµÃ³öµãNµÄ×ø±ê£®×ÛºÏÁ½ÖÖÇé¿ö¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©Áîy=$\frac{3}{8}$x2-$\frac{3}{4}$x-3ÖÐy=0£¬Ôò $\frac{3}{8}$x2-$\frac{3}{4}$x-3=0£¬
½âµÃ£ºx1=-2£¬x2=4£¬
¡àA£¨-2£¬0£©£¬B£¨4£¬0£©£®
¡ßy=$\frac{3}{8}$x2-$\frac{3}{4}$x-3=$\frac{3}{8}$£¨x2-2x£©-3=$\frac{3}{8}$£¨x-1£©2-$\frac{27}{8}$£¬
¡àD£¨1£¬-$\frac{27}{8}$£©£®

£¨2£©Áîy=$\frac{3}{8}$x2-$\frac{3}{4}$x-3ÖÐx=0£¬Ôòy=-3£¬
¡àC£¨0£¬-3£©£®
D£¨1£¬-$\frac{27}{8}$£©£¬O¡äB¡ä=OB=4£®
Èçͼ1£¬×÷µãC£¨0£¬-3£©¹ØÓÚxÖáµÄ¶Ô³ÆµãC¡ä£¨0£¬3£©£¬½«µãC¡ä£¨0£¬3£©ÏòÓÒƽÒÆ4¸öµ¥Î»µÃµ½µãC¡å£¨4£¬3£©£¬Á¬½ÓDC¡å£¬½»xÖáÓÚµãB¡ä£¬½«µãB¡äÏò×óƽÒÆ4¸öµ¥Î»µÃµ½µãO¡ä£¬Á¬½ÓCO¡ä£¬CO¡å£¬ÔòËıßÐÎO¡äB¡äC¡äC¡åΪƽÐÐËıßÐΣ¬´ËʱËıßÐÎO¡äB¡äDCÖܳ¤È¡×îСֵ£®

´ËʱCËıßÐÎO¡äB¡äDC=CD+O¡äB¡ä+CO¡ä+DB¡ä=CD+OB¡ä+DC¡å£®
¡ßO¡äB¡ä=4£¬CD=$\sqrt{£¨1-0£©^{2}+£¨-3+\frac{27}{8}£©^{2}}$=$\frac{\sqrt{73}}{8}$£¬C¡åD=$\sqrt{£¨4-1£©^{2}+£¨3+\frac{27}{8}£©^{2}}$=$\frac{3\sqrt{353}}{8}$£¬
¡àËıßÐÎO¡äB¡äDCµÄÖܳ¤×îСֵΪ4+$\frac{\sqrt{73}}{8}$+$\frac{3\sqrt{353}}{8}$£®
ÉèP£¨m£¬$\frac{3}{8}$m2-$\frac{3}{4}$m-3£©£¬×÷DH¡ÍxÖáÓÚH£¬Á¬½ÓPH£®Ò×ÖªH£¨1£¬0£©£¬B¡ä£¨$\frac{44}{17}$£¬0£©
S¡÷PDB¡ä=S¡÷PDH+S¡÷PHB¡ä-S¡÷DHB¡ä=$\frac{1}{2}$•$\frac{27}{8}$£¨m-1£©+$\frac{1}{2}$•$\frac{27}{17}$•£¨-$\frac{3}{8}$m2+$\frac{3}{4}$m+3£©-$\frac{1}{2}$•$\frac{27}{8}$•$\frac{27}{17}$
=$\frac{27}{272}$£¨-3m2+23m-20£©£¬
¡àm=$\frac{23}{6}$ʱ£¬¡÷PDB¡äµÄÃæ»ý×î´ó£¬
´ËʱP£¨$\frac{23}{6}$£¬-$\frac{37}{96}$£©£®

£¨3£©¡÷CMNÊÇÒÔMNΪֱ½Ç±ßµÄµÈÑüÖ±½ÇÈý½ÇÐηÖÁ½ÖÖÇé¿ö£¨Èçͼ2£©£º

¢Ù¹ýµãC×÷Ö±Ïßy=x-3½»Å×ÎïÏßÓÚµãM£¬
ÁªÁ¢Ö±ÏßCMºÍÅ×ÎïÏߵĽâÎöʽµÃ£º$\left\{\begin{array}{l}{y=x-3}\\{y=\frac{3}{8}{x}^{2}-\frac{3}{4}x-3}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=\frac{14}{3}}\\{y=\frac{5}{3}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=0}\\{y=-3}\end{array}\right.$£¬
¡àM£¨ $\frac{14}{3}$£¬$\frac{5}{3}$£©£®
¡ß¡÷CMNΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬C£¨0£¬-3£©£¬
¡àµãNµÄ×ø±êΪ£¨0£¬$\frac{5}{3}$£©»ò£¨0£¬$\frac{19}{3}$£©£»
¢Ú¹ýµãC×÷Ö±Ïßy=-x-3½»Å×ÎïÏßÓÚµãM£¬
ÁªÁ¢Ö±ÏßCMºÍÅ×ÎïÏߵĽâÎöʽµÃ£º$\left\{\begin{array}{l}{y=-x-3}\\{y=\frac{3}{8}{x}^{2}-\frac{3}{4}x-3}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=-\frac{2}{3}}\\{y=-\frac{7}{3}}\end{array}\right.$»ò $\left\{\begin{array}{l}{x=0}\\{y=-3}\end{array}\right.$£¬
¡àM£¨-$\frac{2}{3}$£¬-$\frac{7}{3}$£©£®
¡ß¡÷CMNΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬C£¨0£¬-3£©£¬
¡àµãNµÄ×ø±êΪ£¨0£¬-$\frac{7}{3}$£©»ò£¨0£¬-$\frac{5}{3}$£©£®
×ÛÉÏ¿ÉÖª£ºµ±¡÷CMNÊÇÒÔMNΪֱ½Ç±ßµÄµÈÑüÖ±½ÇÈý½ÇÐÎʱ£¬µãNµÄ×ø±êΪ£¨0£¬$\frac{5}{3}$£©¡¢£¨0£¬$\frac{19}{3}$£©¡¢£¨0£¬-$\frac{7}{3}$£©»ò£¨0£¬-$\frac{5}{3}$£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»Ôª¶þ´Î·½³Ì¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°¶þÔª¶þ´Î·½³Ì×éµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ£¬Ñ§»áÀûÓöԳƽâ¾ö×î¶ÌÎÊÌ⣬ѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-£¨m+1£©x+$\frac{1}{4}$m2+$\frac{1}{2}$m-$\frac{3}{4}$=0µÄÁ½¸ùÊÇÒ»¸ö¾ØÐÎÁ½Áڱߵij¤£®
£¨1£©Çó¾ØÐÎÁ½Áڱߵij¤£¨ÓÃÓйØmµÄ´úÊýʽ±íʾ£©£»
£¨2£©µ±¾ØÐεĶԽÇÏß³¤Îª$\sqrt{10}$ʱ£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬µãEÊÇ¡÷ABCµÄÄÚÐÄ£¬AEµÄÑÓ³¤Ïߺ͡÷ABCµÄÍâ½ÓÔ²¡ÑOÏཻÓÚµãD£¬ÇóÖ¤£ºDE=DB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÕÅ´ó²®ÀûÓÃÒ»¶Â¾ÉǽAB£¬Óó¤50mµÄÀé°ÊΧ³ÉÒ»¸öÁôÓÐ1m¿íµÄÃŵÄÌÝÐγ¡µØCDEF£¨CD¡ÎEF£©£¬ÈçͼËùʾ£¬ÈôDEµÄ³¤Îª10m£¬ÔòÌÝÐγ¡µØCDEFµÄ×î´óÃæ»ýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏB=90¡ã£¬AB=6mm£¬BC=12mm£¬¶¯µãP´ÓµãA¿ªÊ¼ÑرßABÏòµãBÒÔ1mm/sµÄËÙ¶ÈÒƶ¯£¨²»ÓëµãBÖغϣ©£¬¶¯µãQ´ÓµãB¿ªÊ¼ÑرßBCÏòµãCÒÔ2mm/sµÄËÙ¶ÈÒƶ¯£¨²»ÓëµãCÖغϣ©£¬Èç¹ûP£¬Q·Ö±ð´ÓA£¬Bͬʱ³ö·¢£¬ÄÇô¾­¹ý3Ã룬ËıßÐÎAPQCµÄÃæ»ý×îС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª²»µÈʽ5-3x¡Ü1µÄ×îСÕûÊý½âÊǹØÓÚxµÄ·½³Ì£¨a+9£©x=4£¨x+1£©µÄ½â£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¶Ô³ÆÖáΪx=$\frac{7}{2}$µÄÅ×ÎïÏß¾­¹ýµã£®A£¨6£¬0£©ºÍB£¨0£¬-4£©£¬ÇóÅ×ÎïÏߵĽâÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨2a+b£©2-2a£¨2b+a£©£¬ÆäÖÐa=-1£¬b=$\sqrt{2017}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¸ù¾Ý¹ú¼Ò·¢¸Äίʵʩ¡°½×Ìݵç¼Û¡±µÄÓйØÎļþÒªÇó£¬Ä³ÊнáºÏµØ·½Êµ¼Ê£¬¾ö¶¨´Ó2015Äê5ÔÂ1ÈÕÆð¶Ô¾ÓÃñÉú»îÓõçÊÔÐС°½×Ìݵç¼Û¡±ÊÕ·Ñ£¬¾ßÌåÊշѱê×¼¼ûÏÂ±í£®Èô2015Äê5Ô·ݣ¬¸ÃÊоÓÃñ¼×Óõç100ǧÍßʱ£¬½»µç·Ñ60Ôª£®
Ò»»§¾ÓÃñÒ»¸öÔÂÓõçÁ¿µÄ·¶Î§µç·Ñ¼Û¸ñ£¨µ¥Î»£ºÔª/ǧÍßʱ£©
²»³¬¹ý150ǧÍßʱa
³¬¹ý150ǧÍßʱµ«²»³¬¹ý300ǧÍßʱµÄ²¿·Ö0.65
³¬¹ý300ǧÍßʱµÄ²¿·Ö0.9
£¨1£©ÉϱíÖУ¬a=0.6£¬Èô¾ÓÃñÒÒÓõç200ǧÍßʱ£¬½»µç·Ñ122.5Ôª£®
£¨2£©ÈôijÓû§Ä³ÔÂÓõçÁ¿³¬¹ý300ǧÍßʱ£¬ÉèÓõçÁ¿ÎªxǧÍßʱ£¬ÇëÄãÓú¬xµÄ´úÊýʽ±íʾӦ½»µÄµç·Ñ£®
£¨3£©ÊÔÐС°½×Ìݵç¼Û¡±ÊÕ·ÑÒԺ󣬸ÃÊÐÒ»»§¾ÓÃñÔÂÓõç¶àÉÙǧÍßʱʱ£¬Æäµ±ÔµÄƽ¾ùµç¼ÛÿǧÍßʱ²»³¬¹ý0.62Ôª£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸