精英家教网 > 初中数学 > 题目详情

直接写出答案:
(1)数学公式=______;
(2)(+5)+(-7)=______;
(3)数学公式=______;
(4)1.2×104=______.

解:(1)原式=÷
=×
=

(2)原式=-(7-5)
=-2;

(3)原式=-
=-

(4)原式=1.2×10000
=12000.
故答案为:(1);(2)-2;(3)-;(4)12000
分析:(1)利用绝对值的代数意义化简后,利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,即可得到结果;
(2)利用异号两数相加的法则计算,即可得到结果;
(3)原式表示4个-的乘积的相反数,即可得到结果;
(4)将原式104化为10000,计算即可的结果.
点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、在如图的方格纸中,每个小正方形的边长都为1.
(1)画出将△A1B1C1,沿直线DE方向向上平移5格得到的△A2B2C2
(2)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

点A是直线CE上一点,∠MAD是一个可以绕点A任意旋转的60°角.
(1)如图1所示,若∠BAC=90°,AM的反向延长线AN平分∠BAE,求∠EAD的度数是多少?
(2)如图2所示,若∠BAC=m°,(1)中其余条件不变,则∠EAD的度数是
 
;(直接写出答案)
精英家教网
(3)如图3,若∠BAC=m°,将(1)中的“AN平分∠BAE”改为“∠NAB=90°”,则∠EAD的度数是
 
;(直接写出答案)
(4)在图4画出同样满足(3)的条件但不同于图3的图形,并求∠EAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,点A(10,0),点C(0,6),BC∥OA,OB=10,点E从点B出发,以每秒1个单位长度沿BC向点C运动,点F从点O出发,以每秒2个单位长度沿OB向点B运动,现点E、F同时出发,连接EF并延长交OA于点D,当F点到达B点时,E、F两点同时停止运动.设运动时间为t秒
(1)当四边形ABED是平行四边形时,求t的值;
(2)当△BEF的面积最大时,求t的值;
(3)当以BE为直径的圆经过点F时,求t的值;
(4)当动点E、F会同时在某个反比例函数的图象上时,求t的值.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连接EB,过O作OP⊥EB于P,连接CP,过P作PF⊥PC交射线OS于F.

(1)求证:△POC∽△PBF.
(2)当OE=1,OE=2时,BF的长分别为多少?当OE=n时,BF=
4
n
4
n

(3)当OE=1时,S△EBF=S1;OE=2时,S△EBF=S2;…,OE=n时,S△EBF=Sn.则S1+S2+…+Sn=
2n
2n
.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A(-4,n)和点B(2,-4)是反比例函数y=
m
x
的图象和一次函数y=kx+b 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求方程kx+b=
m
x
的解(请直接写出答案);
(3)求不等式kx+b>
m
x
的解集(请直接写出答案).

查看答案和解析>>

同步练习册答案