【题目】如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EFEN.
(1)求证:QN=QF;
(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.
【答案】(1)证明见解析;(2)2.5.
【解析】
试题分析:(1)如图1,通过相似三角形(△MEF∽△MEN)的对应角相等推知,∠1=∠EMN;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;
(2)如图2,连接OE交MQ于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠EMF=∠ENM,所以由“圆周角、弧、弦间的关系”推知点E是弧MH的中点,则OE⊥MQ;然后通过解直角△MNE求得cos∠Q=sin∠GMO=,则可以求r的值.
试题解析:(1)如图1,
∵ME2=EFEN,
∴.
又∵∠MEF=∠MEN,
∴△MEF∽△MEN,
∴∠1=∠EMN.
∵∠1=∠2,∠3=∠EMN,
∴∠2=∠3,
∴QN=QF;
(2)解:如图2,连接OE交MQ于点G,设⊙O的半径是r.
由(1)知,△MEF∽△MEN,则∠4=∠5.
∴.
∴OE⊥MQ,
∴EG=1.
∵cos∠Q=,且∠Q+∠GMO=90°,
∴sin∠GMO=,
∴,即,
解得,r=2.5,即⊙O的半径是2.5.
科目:初中数学 来源: 题型:
【题目】为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )
A.中位数
B.平均数
C.众数
D.加权平均数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市在元旦节期间推出如下优惠方案:
(1)一次性购物不超过100元不享受优惠;
(2)一次性购物超过100元但不超过300元优惠10%;
(3)一次性购物超过300元一律优惠20%.
市民王波在国庆期间两次购物分别付款80元和252元,如果王波一次性购买与上两次相同的商品,则应付款_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.
A.6折B.7折C.8折D.9折
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com