为了了解学生在一年中的课外阅读量,九(1)班对九年级800名学生采用随机抽样的方式进行了问卷调查,调查的结果分为四种情况:A.10本以下;B.10~15本;C.16~20本;D.20本以上.根据统计整理并制作了如图所示的两幅统计图表:
(1)在这次调查中一共抽查了 名学生;
(2)表中x,y的值分别为:x= ,y= ;
(3)在扇形统计图中,C部分所对应的扇形的圆心角是 度;
(4)根据抽样调查结果,请估计九年级学生一年阅读课外书20本以上的学生人数.
![]()
(1)200; (2)60,80;(3)144;(4)160.
【解析】
试题分析:(1)利用A部分的人数÷A部分人数所占百分比即可算出本次问卷调查共抽取的学生数;
(2)x=抽查的学生总数×B部分的学生所占百分比,y=抽查的学生总数﹣A部分的人数﹣B部分的人数﹣D部分的人数;
(3)C部分所对应的扇形的圆心角的度数=360°×所占百分比;
(4)利用样本估计总体的方法,用800人×调查的学生中一年阅读课外书20本以上的学生人数所占百分比.
试题解析:(1)20÷10%=200(人),
在这次调查中一共抽查了200名学生,
(2)x=200×30%=60,y=200﹣20﹣60﹣40=80,
(3)360×
=144°,
C部分所对应的扇形的圆心角是144度,
(4)800×
=160(人).
考点:1.频数(率)分布表;2.用样本估计总体;3.扇形统计图.
科目:初中数学 来源:2014年初中毕业升学考试(湖南湘潭卷)数学(解析版) 题型:解答题
已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.
(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;
(2)直线经过A(2,3),且与y=
x+3垂直,求解析式.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(湖南湘潭卷)数学(解析版) 题型:选择题
以下四个命题正确的是( )
A.任意三点可以确定一个圆
B.菱形对角线相等
C.直角三角形斜边上的中线等于斜边的一半
D.平行四边形的四条边相等
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(湖南永州卷)数学(解析版) 题型:解答题
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,2),点M(m,n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上,过点M作x轴的平行线交y轴于点Q,交抛物线于另一点E,直线BM交y轴于点F.
(1)求抛物线的解析式,并写出其顶点坐标;
(2)当S△MFQ:S△MEB=1:3时,求点M的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(湖南永州卷)数学(解析版) 题型:填空题
如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为 .
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(湖南永州卷)数学(解析版) 题型:选择题
在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:
S=1+62+63+64+65+66+67+68+69①
然后在①式的两边都乘以6,得:
6S=6+62+63+64+65+66+67+68+69+610②
②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=
,得出答案后,爱动脑筋的小林想:
如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是( )
A.
B.
C.
D.a2014﹣1
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(湖南株洲卷)数学(解析版) 题型:填空题
直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于 .
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(湖南岳阳卷)数学(解析版) 题型:解答题
如图,抛物线经过点A(1,0),B(5,0),C(0,
)三点,设点E(x,y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.
![]()
(1)求抛物线的解析式;
(2)当点E(x,y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值?
(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点,F点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com