精英家教网 > 初中数学 > 题目详情
9.一个长方形池塘的池深与池宽相等,如图,有一颗芦苇长在塘中央,露出水面1m,把芦苇顶拉到岸边,刚好与水面齐平,求水深和芦苇的长度(结果可保留根号),你能解决这个问题吗?

分析 水深为xm,则芦苇的长度为(x+1)m,由勾股定理得出方程,解方程即可.

解答 解:能解决这个问题;
设水深为xm,则芦苇的长度为(x+1)m,
由勾股定理得:($\frac{1}{2}$x)2+x2=(x+1)2
解得:x=4±2$\sqrt{5}$(负值舍去),
∴x=4+2$\sqrt{5}$,x+1=5+2$\sqrt{5}$;
答:水深为(4+2$\sqrt{5}$)m,芦苇长度为(5+2$\sqrt{5}$)m.

点评 本题考查了勾股定理的运用;由勾股定理得出方程是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒钟后△DPQ的面积等于28cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算题:|$\frac{1}{21}$-$\frac{1}{20}$|+|$\frac{1}{22}$-$\frac{1}{21}$|+|$\frac{1}{23}$-$\frac{1}{22}$|+…+|$\frac{1}{2003}$-$\frac{1}{2002}$|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.A、B两码头相距120千米,水速为2千米/小时,从A码头到B码头为顺水航行.当甲、乙两船同时从A、B两码头相向而行,两船3小时相遇;当甲、乙两船同时从A码头向B码头出发,1小时后,甲船比乙船多航行20千米,
(1)求甲、乙两船在静水中的速度;
(2)当甲、乙两船分别从A、B两码头同向顺流而下,甲船出发时不慎将一漂浮物掉入水中,当甲船到漂浮物的距离是到乙船距离的2倍时,求甲船从A码头出发了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.王老师家买了一套新房,其结构如图所示,(单位:米)他打算将卧室铺上木地板,其余部份铺上地砖.
(1)木地板和地砖分别需要多少平方米?
(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在矩形ABCD中,AB=6,以点B为直角顶点作等腰直角三角形BEF,连接AE、AF,当AE⊥AF且AE:AF=1:2时,则AE的长为2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知反比例函数y=$\frac{k-4}{x}$图象的两个分支分别位于第一、第三象限范围.
(1)求k的取值范围;
(2)当反比例函数过A(2,1),求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.观察下列各式:
(x-1)÷(x-1)=1;
(x2-1)÷(x-1)=x+1;
(x3-1)÷(x-1)=x2+x+1;
(x4-1)÷(x-1)=x3+x2+x+1;

(x8-1)÷(x-1)=x7+x6+x5+…+x+1;
(1)根据上面各式的规律填空:
①(x2016-1)÷(x-1)=x2015+x2014+x2013+…+x+1
②(xn-1)÷(x-1)=xn-1+xn-2+…+x+1
(2)利用②的结论求22016+22015+…+2+1的值;
(3)若1+x+x2+…+x2015=0,求x2016的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知a=-8,b=3,c=2,d=-4,求下面各式的值:
(1)a-b+c-d;
(2)a-(b+c+d)

查看答案和解析>>

同步练习册答案