精英家教网 > 初中数学 > 题目详情
(2008•哈尔滨)如图,圆锥形烟囱帽的底面直径为80cm,母线长为50cm,则这样的烟囱帽的侧面积是( )

A.4000πcm2
B.3600πcm2
C.2000πcm2
D.1000πcm2
【答案】分析:利用勾股定理可求得圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷2.
解答:解:圆锥的侧面积展开图是一个扇形,圆锥的母线长为50cm,底面直径为80cm,扇形的弧长为80π,所以圆锥形烟囱帽的侧面积=×50×80π=2000πcm2.故选C.
点评:本题利用了圆的周长公式和扇形面积公式求解.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2008•哈尔滨)如图,在平面直角坐标系中,直线y=与x轴、y轴分别交于A、B两点,将△ABO绕原点O顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB与线段A´B´相交于点G.动点E从原点O出发,以1个单位/秒的速度沿x轴正方向运动,设动点E运动的时间为t秒.
(1)求点D的坐标;
(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;
(3)若以动点为E圆心,以为半径作⊙E,连接A′E,t为何值时,Tan∠EA′B′=?并判断此时直线A′O与⊙E的位置关系,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2008•哈尔滨)如图,在平面直角坐标系中,直线y=与x轴、y轴分别交于A、B两点,将△ABO绕原点O顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB与线段A´B´相交于点G.动点E从原点O出发,以1个单位/秒的速度沿x轴正方向运动,设动点E运动的时间为t秒.
(1)求点D的坐标;
(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;
(3)若以动点为E圆心,以为半径作⊙E,连接A′E,t为何值时,Tan∠EA′B′=?并判断此时直线A′O与⊙E的位置关系,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前知识点回归+巩固 专题11 一次函数(解析版) 题型:解答题

(2008•哈尔滨)如图,在平面直角坐标系中,直线y=与x轴、y轴分别交于A、B两点,将△ABO绕原点O顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB与线段A´B´相交于点G.动点E从原点O出发,以1个单位/秒的速度沿x轴正方向运动,设动点E运动的时间为t秒.
(1)求点D的坐标;
(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;
(3)若以动点为E圆心,以为半径作⊙E,连接A′E,t为何值时,Tan∠EA′B′=?并判断此时直线A′O与⊙E的位置关系,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(2008•哈尔滨)如图,在平面直角坐标系中,直线y=与x轴、y轴分别交于A、B两点,将△ABO绕原点O顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB与线段A´B´相交于点G.动点E从原点O出发,以1个单位/秒的速度沿x轴正方向运动,设动点E运动的时间为t秒.
(1)求点D的坐标;
(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;
(3)若以动点为E圆心,以为半径作⊙E,连接A′E,t为何值时,Tan∠EA′B′=?并判断此时直线A′O与⊙E的位置关系,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(2008•哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大,最大面积是多少?

查看答案和解析>>

同步练习册答案