精英家教网 > 初中数学 > 题目详情

【题目】已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.

(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s= ,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.

【答案】
(1)

解:由直线:y=x﹣2知:A(2,0)、C(0,﹣2);

∵AB=2,∴OB=OA+AB=4,即 B(4,0).

设抛物线的解析式为:y=a(x﹣2)(x﹣4),代入C(0,﹣2),得:

a(0﹣2)(0﹣4)=﹣2,解得 a=﹣

∴抛物线的解析式:y=﹣ (x﹣2)(x﹣4)=﹣ x2+ x﹣2


(2)

解:在Rt△OBC中,OB=4,OC=2,则 tan∠OCB=2;

∵CE=t,∴DE=2t;

而 OP=OB﹣BP=4﹣2t;

∴s= = = (0<t<2),

∴当t=1时,s有最小值,且最小值为 1


(3)

解:在Rt△OBC中,OB=4,OC=2,则 BC=2

在Rt△CED中,CE=t,ED=2t,则 CD= t;

∴BD=BC﹣CD=2 t;

以P、B、D为顶点的三角形与△ABC相似,已知∠OBC=∠PBD,则有两种情况:

= = ,解得 t=

= = ,解得 t=

综上,当t= 时,以P、B、D为顶点的三角形与△ABC相似


【解析】(1)首先根据直线AC的解析式确定点A、C的坐标,已知AB的长,进一步能得到点B的坐标;然后由待定系数法确定抛物线的解析式.(2)根据所给的s表达式,要解答该题就必须知道ED、OP的长;BP、CE长易知,那么由OP=OB﹣BP求得OP长,由∠CED的三角函数值可得到ED的长,再代入s的表达式中可得到关于s、t的函数关系式,结合函数的性质即可得到s的最小值.(3)首先求出BP、BD的长,若以P、B、D为顶点的三角形与△ABC相似,已知的条件是公共角∠OBC,那么必须满足的条件是夹公共角的两组对应边成比例,分两种情况讨论即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点都在格点上,点A的坐标为(2,4).

(1)画出ABC关于x轴对称的A1B1C1,并写出点A1的坐标A1 ________________

(2)画出A1B1C1绕原点O旋转180°后得到的A2B2C2,并写出点A2的坐标A2__________________

(3) ABC是否为直角三角形?答_________(填是或者不是).

(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.

(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一天,龟、兔进行了600米赛跑,如图表示龟兔赛跑的路程s()与时间t(分钟)的关系(兔子睡觉前后速度保持不变),根据图象回答以下问题:

(1)赛跑中,兔子共睡了多少时间?

(2)赛跑开始后,乌龟在第几分钟时从睡觉的兔子旁经过?

(3)兔子跑到终点时,乌龟已经到了多长时间?并求兔子赛跑的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.

(1)试说明△PCM≌△QDM.

(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABC的边BC在直线l上,ACBC,且AC=BCEFP的边FP也在直线l上,边EF与边AC重合,且EF=FP

1)直接写出ABAP所满足的数量关系:_____ABAP的位置关系:_____

2)将ABC沿直线l向右平移到图2的位置时,EPAC于点Q,连接APBQ,求证:AP=BQ

3)将ABC沿直线l向右平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接APBQ,试探究AP=BQ是否仍成立?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1.纸上有5个边长为1的小正方形组成的纸片,可把它剪拼成一个正方形(图2)

3)

拼成的正方体的面积与边长分别是多少?

你能把这十个小正方体组成的图形纸(图3),剪拼成一个大正方形吗?若能,则请画出剪拼成的大正方形,并求出其边长为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面题目的计算过程:

=

=x﹣4﹣2(x﹣2)②

=x﹣4﹣2x+4③

=﹣x④

(1)上述计算过程中,从哪一步开始出现错误?请写出错误步骤的序号   

(2)错误原因是   

(3)写出本题的正确解法.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A∠1∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )

A. 2∠A=∠1﹣∠2 B. 3∠A=2∠1﹣∠2

C. 3∠A=2∠1﹣∠2 D. ∠A=∠1﹣∠2

查看答案和解析>>

同步练习册答案