【题目】如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.
(1)直接写出AB与AP所满足的数量关系:_____,AB与AP的位置关系:_____;
(2)将△ABC沿直线l向右平移到图2的位置时,EP交AC于点Q,连接AP,BQ,求证:AP=BQ;
(3)将△ABC沿直线l向右平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,试探究AP=BQ是否仍成立?并说明理由.
【答案】(1)AB=AP,AB⊥AP;(2)证明见解析;(3)成立,理由见解析.
【解析】试题分析:(1)AB=AP,AB⊥AP,已知AC⊥BC且AC=BC,可得△ABC为等腰直角三角形,所以∠BAC=∠ABC=45°,根据已知条件易证∠PEF=45°,即可得∠BAP=90°,结论得证;(2)根据已知条件易证Rt△BCQ≌Rt△ACP,根据全等三角形的性质即可得结论;(3)结论仍成立,类比(2)方法证明即可.
试题解析:
(1)AB=AP;AB⊥AP;
证明:∵AC⊥BC且AC=BC,
∴△ABC为等腰直角三角形,
∴∠BAC=∠ABC=(180°﹣∠ACB)=45°,
易知,△ABC≌△EFP,
同理可证∠PEF=45°,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP;
故答案为:AB=AP AB⊥AP
(2)证明:
∵EF=FP,EF⊥FP
∴∠EPF=45°.
∵AC⊥BC,
∴∠CQP=∠EPF=45°
∴CQ=CP
在 Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP (SAS).
∴AP=BQ.
(3)AP=BQ成立,理由如下:
∵EF=FP,EF⊥FP,
∴∠EPF=45°.
∵AC⊥BC
∴∠CPQ=∠EPF=45°
∴CQ=CP
在 Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP (SAS).
∴AP=BQ.
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.
(1)求证:DM=BM;
(2)求MH的长;
(3)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;
(4)在(3)的条件下,当点P在边AB上运动时是否存在这样的 t值,使∠MPB与∠BCD互为余角,若存在,则求出t值,若不存,在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法: ①abc<0;
②2a﹣b=0;
③4a+2b+c<0;
④若(﹣5,y1),( ,y2)是抛物线上两点,则y1>y2 .
其中说法正确的是( )
A.①②
B.②③
C.①②④
D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知斜坡AB长为80米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.
(1)若修建的斜坡BE的坡角为45°,求平台DE的长;(结果保留根号)
(2)一座建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s= ,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2004年8月1日起,浙江省城乡居民生活用电执行新的电价政策:安装”一户一表”的居民
用户,按用抄见电量(每家用户电表所表示的用电量)实行阶梯式累进加价,其中低于50千瓦时(含50
千瓦时)部分电价不调整;51—200千瓦时部分每千瓦时电价上调0.03元;超过200千瓦时部分每千
瓦时电价上调0.10元.已知调整前电价统一为每千瓦时0.53元.
(1)若许老师家10月份的用电量为130千瓦时,则10月份许老师家应付电费多少元?
(2)已知许老师家10月份的用电量为千瓦时,请完成下列填空:
①若千瓦时,则10月份许老师家应付电费为 元;
②若50<≤200千瓦时,则10月份许老师家应付电费为 元;
③若>200千瓦时,则10月份许老师家应付电费为 元.
(3)若10月份许老师家应付电费为96.50元,则10月份许老师家的用电量是多少千瓦时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.
(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点 ,经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.
(1)用含t的代数式表示点P的坐标;
(2)过O作OC⊥AB于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并说明此时⊙P与直线CD的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com