精英家教网 > 初中数学 > 题目详情
如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:
①△AED≌△DFB;②S四边形BCDG=
3
4
CG2;③若AF=2DF,则BG=6GF.
其中正确的结论(  )
A.只有①②B.只有①③C.只有②③D.①②③

①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴点B、C、D、G四点共圆,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
∴∠BGC=∠DGC=60°.
过点C作CM⊥GB于M,CN⊥GD于N.
∴CM=CN,
CM=CN
BC=CD

∴△CBM≌△CDN,(HL)
∴S四边形BCDG=S四边形CMGN
S四边形CMGN=2S△CMG
∵∠CGM=60°,
∴GM=
1
2
CG,CM=
3
2
CG,
∴S四边形CMGN=2S△CMG=2×
1
2
×
1
2
CG×
3
2
CG=
3
4
CG2
③过点F作FPAE于P点.
∵AF=2FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=2AE,
∴FP:BE=1:6=FG:BG,
即 BG=6GF.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABO中,已知点A(
3
,3)
、B(-1,-1)、O(0,0),正比例函数y=-x图象是直线l,直线ACx轴交直线l与点C.
(1)C点的坐标为______;
(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°≤α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.
①∠α=______;②画出△A′OB′.
(3)写出所有满足△DOC△AOB的点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,下列各图中,______绕一点旋转180°后能与原来位置重合.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC的顶点A,B,C的坐标分别是A(1,-1),B(1,-5),C(4,-5).
(1)将△ABC绕点A按顺时针方向旋转90°后得到△A1B1C1,并直接写出顶点A1、B1、C1的坐标;
(2)作出△ABC关于点P(0,-2)成中心对称的图形△A2B2C2,并直接写出顶点A2、B2、C2的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).
(1)作出△ABC关于原点O中心对称的图形△A1B1C1
(2)写出△A1B1C1各顶点的坐标.
解:(2)A1 (______),B1 (______),C1 (______).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一次研究性学习活动中,某小组将两张互相重合的正方形纸片ABCD和EFGH的中心O用图钉固定住,保持正方形ABCD不动,顺时针旋转正方形EFGH,如图所示.
(1)小组成员经观察、测量,发现在旋转过程中,有许多有趣的结论.下面是旋转角度小于90°时他们得到的一些猜想:
①ME=MA;
②两张正方形纸片的重叠部分的面积为定值;
③∠MON保持45°不变.
请你对这三个猜想作出判断(正确的在序号后的括号内打上“√”,错误的打上“×”):
①(  );②(  );③(  )
(2)小组成员还发现:(1)中的△EMN的面积S随着旋转角度∠AOE的变化而变化.请你指出在怎样的位置时△EMN的面积S取得最大值.(不必证明)
(3)上面的三个猜想中若有正确的,请选择其中的一个给予证明;若都是错误的,请选择其一说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

请阅读下列材料?:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形(可证),而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而把AB放在Rt△APB(可证得)中,用勾股定理求出等边△ABC的边长为
7
.问题得到解决.?
[思路分析]首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究.旋转60度以后BP就成了BP′,PC成了P′A,借助等量关系BP′=PP′,于是△APP′就可以计算了.
解决问题:
请你参考李明同学旋转的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°到Rt△DEF,则旋转前后两个直角三角形重叠部分的面积为______cm2

查看答案和解析>>

同步练习册答案