【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣+bx+c的图象分别交于B,C两点,点B在第一象限.
(1)求二次函数y=﹣+bx+c的表达式;
(2)连接AB,求AB的长;
(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.
【答案】(1)抛物线的解析式为y=﹣x2+x﹣2;
【解析】
试题分析:(1)根据当x=0和x=5时所对应的函数值相等,可得(5,c),根据待定系数法,可得函数解析式;
(2)联立抛物线与直线,可得方程组,根据解方程组,可得B、C点坐标,根据勾股定理,可得AB的长;
(3)根据线段中点的性质,可得M点的坐标,根据旋转的性质,可得MN与BM的关系,根据平行四边形的判定,可得答案.
试题解析:(1)当x=0时,y=c,即(0,c).
由当x=0和x=5时所对应的函数值相等,得(5,c).
将(5,c)(1,0)代入函数解析式,得,解得.
故抛物线的解析式为y=﹣x2+x﹣2;
(2)联立抛物线与直线,得
,解得,,即B(2,1),C(5,﹣2).
由勾股定理,得AB==;
(3)如图:
,
四边形ABCN是平行四边形,∵M是AC的中点,∴AM=CM.
∵点B绕点M旋转180°得到点N,∴BM=MN,
∴四边形ABCN是平行四边形.
科目:初中数学 来源: 题型:
【题目】(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式(不要求写自变量的取值范围);
(2)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:
x | ﹣1 | 0 | 0.5 | 2 |
y | ﹣1 | 2 | 3.75 | 2 |
下列结论中正确的有________个.
(1)ac<0;(2)当x>1时,y的值随x值的增大而减小;(3)x=2是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<2时,ax2+(b﹣1)x+c>0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,在中,,,.点D从点C出发沿方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿方向以每秒2个单位长的速度向点B匀速运动,设点D、E运动的时间是t秒.过点D作于点F,连接、.
(1)求证:;
(2)四边形能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2﹣2x+m+1与x轴交于A(x1 , 0)、B(x2 , 0)两点,且x1<0,x2>0,与y轴交于点C,顶点为P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的两个实根,则x1+x2=﹣ ,x1x2= )
(1)求m的取值范围;
(2)若OA=3OB,求抛物线的解析式;
(3)在(2)中抛物线的对称轴PD上,存在点Q使得△BQC的周长最短,试求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC且tanA= ,P为BC上一点,且BP:PC=3:5,E、F分别为AB、AC上的点,且∠EPF=2∠B,若△EPF的面积为6,则EF=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com