19£®ÒÑÖª£ºÈçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßy=-$\frac{3}{4}$x+6ÓëxÖá¡¢yÖáµÄ½»µã·Ö±ðΪA¡¢BÁ½µã£¬½«¡ÏOBA¶ÔÕÛ£¬Ê¹µãOµÄ¶ÔÓ¦µãHÂäÔÚÖ±ÏßABÉÏ£¬ÕÛºÛ½»xÖáÓÚµãC£®
£¨1£©Ö±½Óд³öµãCµÄ×ø±ê£¬²¢Çó¹ýA¡¢B¡¢CÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èô£¨1£©ÖÐÅ×ÎïÏߵĶ¥µãΪD£¬ÔÚÖ±ÏßBCÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃËıßÐÎODAPΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©Èô°Ñ£¨1£©ÖеÄÅ×ÎïÏßÏò×óƽÒÆ3.5¸öµ¥Î»£¬ÔòͼÏóÓëxÖá½»ÓÚF¡¢N£¨µãFÔÚµãNµÄ×ó²à£©Á½µã£¬½»yÖáÓÚEµã£¬ÔòÔÚ´ËÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚÒ»µãQ£¬Ê¹µãQµ½E¡¢NÁ½µãµÄ¾àÀëÖ®²î×î´ó£¿Èô´æÔÚ£¬ÇëÇó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÖá¶Ô³ÆºÍ½Çƽ·ÖÏßµÄÐÔÖÊÒÔ¼°¹´¹É¶¨Àí¿ÉÒÔÇó³öOCµÄ³¤¶È£¬´Ó¶øÇó³öµãCµÄ×ø±ê£®ÔÙ¸ù¾ÝÖ±ÏߵĽâÎöʽÇó³öA¡¢BµÄ×ø±ê£¬×îºóÀûÓôý¶¨ÏµÊý·¨¾Í¿ÉÒÔÇó³öÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©¸ù¾Ý£¨1£©µÄ½âÎöʽ¿ÉÒÔת»¯Îª¶¥µãʽ¶øÇó³ö¶¥µã×ø±êD£¬ÀûÓÃB¡¢CµÄ×ø±êÇó³öBCµÄ½âÎöʽ£¬¼ÙÉèÔÚÖ±ÏßBCÉÏ´æÔÚÂú×ãÌõ¼þµÄµãP£¬ÀûÓÃƽÐÐËıßÐεÄÐÔÖʺÍÈý½ÇÐÎÈ«µÈµÄÐÔÖÊÇó³öµãPµÄ×ø±ê£¬µÃµ½µãP²»ÔÚÖ±ÏßBCÉÏ£¬¶øµÃ³ö½áÂÛ£®
£¨3£©Æ½Òƺó¸ù¾Ý£¨1£©µÄ½âÎöʽ¿ÉÒԵõ½Æ½ÒƺóµÄ½âÎöʽ£¬¶¥µã×ø±ê¼°¶Ô³ÆÖᣬ¿ÉÒÔÇó³öÓë×ø±êÖáµÄ½»µãF¡¢N¡¢EµÄ×ø±ê£¬Á¬½ÓEF£¬¸ù¾ÝE¡¢FµÄ×ø±êÇó³öÆä½âÎöʽ£¬Çó³öEFÓë¶Ô³ÆÖáµÄ½»µã£¬¾ÍÊÇQµã£®

½â´ð ½â£º£¨1£©Á¬½ÓCH£¬
ÓÉÖá¶Ô³ÆµÃCH¡ÍAB£¬BH=BO£¬CH=CO
¡àÔÚ¡÷CHAÖÐÓɹ´¹É¶¨Àí£¬µÃ
AC2=CH2+AH2
¡ßÖ±Ïßy=$\frac{3}{4}$x+6ÓëxÖá¡¢yÖáµÄ½»µã·Ö±ðΪA¡¢BÁ½µã£¬
¡àµ±x=0ʱ£¬y=6£¬µ±y=0ʱ£¬x=8
¡àB£¨0£¬6£©£¬A£¨8£¬0£©
¡àOB=6£¬OA=8£¬
ÔÚRt¡÷AOBÖУ¬Óɹ´¹É¶¨Àí£¬µÃ
AB=10
ÉèC£¨a£¬0£©£¬¡àOC=a
¡àCH=a£¬AH=4£¬AC=8-a£¬ÔÚRt¡÷AHCÖУ¬
Óɹ´¹É¶¨Àí£¬µÃ
£¨8-a£©2=a2+42½âµÃ
a=3
C£¨3£¬0£©
ÉèÅ×ÎïÏߵĽâÎöʽΪ£ºy=ax2+bx+c£¬ÓÉÌâÒ⣬µÃ
$\left\{\begin{array}{l}{6=c}\\{0=64a+8b+c}\\{0=9a+3b+c}\end{array}\right.$
½âµÃ£º$\left\{\begin{array}{l}{a=\frac{1}{4}}\\{b=-\frac{11}{4}}\\{c=6}\end{array}\right.$
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=$\frac{1}{4}$x2$-\frac{11}{4}x$+6£¬
¡ày=$\frac{1}{4}$${£¨x-\frac{11}{2}£©}^{2}$$-\frac{25}{16}$£»


£¨2£©ÓÉ£¨1£©µÄ½áÂÛ£¬µÃ
D£¨$\frac{11}{2}$£¬-$\frac{25}{16}$£©
¡àDF=$\frac{25}{16}$£¬
ÉèBCµÄ½âÎöʽΪ£ºy=kx+b£¬ÔòÓÐ
$\left\{\begin{array}{l}{6=b}\\{0=3k+b}\end{array}\right.$
½âµÃ£º$\left\{\begin{array}{l}{b=6}\\{k=-2}\end{array}\right.$
Ö±ÏßBCµÄ½âÎöʽΪ£ºy=-2x+6
Éè´æÔÚµãPʹËıßÐÎODAPÊÇƽÐÐËıßÐΣ¬P£¨m£¬n£©
×÷PE¡ÍOAÓÚE£¬HD½»OAÓÚF£®
¡à¡ÏPEO=¡ÏAFD=90¡ã£¬PO=DA£¬PO¡ÎDA
¡à¡ÏPOE=¡ÏDAF
¡à¡÷OPE¡Õ¡÷ADF
¡àPE=DF=n=$\frac{25}{16}$£¬
¡à$\frac{25}{16}$=-2x+6
¡à$x=\frac{71}{32}$
P£¨$\frac{5}{2}$£¬$\frac{25}{16}$£©
µ±x=$\frac{5}{2}$ʱ£¬
y=-2¡Á$\frac{5}{2}$+6=1¡Ù$\frac{25}{16}$
¡àµãP²»ÔÙÖ±ÏßBCÉÏ£¬¼´Ö±ÏßBCÉϲ»´æÔÚÂú×ãÌõ¼þµÄµãP£»

£¨3£©ÓÉÌâÒâµÃ£¬Æ½ÒƺóµÄ½âÎöʽΪ£º
y=$\frac{1}{4}$£¨x-2£©2$-\frac{25}{16}$
¡à¶Ô³ÆÖáΪ£ºx=2£¬
µ±x=0ʱ£¬y=-$\frac{9}{16}$
µ±y=0ʱ£¬0=$\frac{1}{4}$£¨x-2£©2$-\frac{25}{16}$
½âµÃ£ºx1=$-\frac{1}{2}$£»x2=$\frac{9}{2}$
¡ßFÔÚNµÄ×ó±ß
F£¨$-\frac{1}{2}$£¬0£©£¬E£¨0£¬-$\frac{9}{16}$£©£¬N£¨$\frac{9}{2}$£¬0£©
Á¬½ÓEF½»x=2ÓÚQ£¬ÉèEFµÄ½âÎöʽΪ£ºy=kx+b£¬ÔòÓÐ
$\left\{\begin{array}{l}{0=-\frac{1}{2}k+b}\\{b=-\frac{9}{16}}\end{array}\right.$
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{9}{8}}\\{b=-\frac{9}{16}}\end{array}\right.$
¡àEFµÄ½âÎöʽΪ£ºy=-$\frac{9}{8}$x-$\frac{9}{16}$
¡à$\left\{\begin{array}{l}{y=-\frac{9}{8}x-\frac{9}{16}}\\{x=2}\end{array}\right.$
½âµÃ£º
$\left\{\begin{array}{l}{x=2}\\{y=-\frac{45}{16}}\end{array}\right.$
¡àQ£¨2£¬-$\frac{45}{16}$£©£®

µãÆÀ ±¾ÌâÊÇÒ»µÀ¶þ´Îº¯ÊýµÄ×ÛºÏÊÔÌ⣬¿¼²éÁËÖá¶Ô³ÆµÄÐÔÖÊ£¬¹´¹É¶¨ÀíµÄÔËÓ㬴ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽµÄ·½·¨£¬Í¼ÏóµÄƽÒÆ£¬Æ½ÐÐËıßÐεÄÅж¨¼°ÐÔÖÊÒÔ¼°×îÖµµÄÈ·¶¨µÈ¶à¸ö֪ʶµã£¬×ÛºÏÔËÓöþ´Îº¯ÊýµÄÐÔÖʼ°Æ½ÐÐËıßÐεÄÐÔÖÊ£¬Çó³ö¸÷µã×ø±êÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁÐÃüÌâÖУ¬ÕæÃüÌâÊÇ£¨¡¡¡¡£©
A£®Á½Ìõ¶Ô½ÇÏß»¥Ïഹֱƽ·ÖµÄËıßÐÎÊǾØÐÎ
B£®ÓÐÒ»Ìõ¶Ô½ÇÏßƽ·ÖÒ»×é¶Ô½ÇµÄËıßÐÎÊÇÁâÐÎ
C£®Á½Ìõ¶Ô½ÇÏßÏàµÈµÄËıßÐÎÊǾØÐÎ
D£®Ò»×é¶Ô±ßƽÐУ¬Ò»×é¶Ô½ÇÏàµÈµÄËıßÐÎÊÇƽÐÐËıßÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®£¨1£©½â·½³Ì×é$\left\{\begin{array}{l}{x+y=8}\\{5x+3y=34}\end{array}\right.$
£¨2£©½â·½³Ì×é$\left\{\begin{array}{l}{2x+3y=12}\\{3x+4y=17}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬ADÊÇ¡÷ABCÖСÏBACµÄ½Çƽ·ÖÏߣ¬DE¡ÍABÓÚµãE£¬S¡÷ABC=7£¬DE=2£¬AB=4£¬ÔòAC³¤ÊÇ£¨¡¡¡¡£©
A£®3B£®4C£®6D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¶þ´Îº¯Êýy=x2-2x-6µÄ¶Ô³ÆÖáΪ£¨¡¡¡¡£©
A£®x=2B£®x=-2C£®x=1D£®x=-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬µãEÔÚABÉÏ£¬°ÑÕâ¸öÖ±½ÇÈý½ÇÐÎÑØCEÕÛµþºó£¬Ê¹µãBÇ¡ºÃÂ䵽б±ßACµÄÖеãO´¦£¬ÈôBC=3£¬ÔòÕÛºÛCEµÄ³¤Îª£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®2$\sqrt{3}$C£®3$\sqrt{3}$D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ä³ÒÕУÒôÀÖרҵ×ÔÖ÷ÕÐÉú¿¼ÊÔÖУ¬ËùÓп¼Éú¾ù²Î¼ÓÁË¡°ÉùÀÖ¡±ºÍ¡°Æ÷ÀÖ¡±Á½¸ö¿ÆÄ¿µÄ¿¼ÊÔ£¬³É¼¨¶¼·ÖΪÎå¸öµÈ¼¶£®¶Ôij¿¼³¡¿¼ÉúÁ½¿Æ¿¼ÊԳɼ¨½øÐÐÁËͳ¼Æ·ÖÎö£¬»æÖÆÁËÈçÏÂͳ¼Æ±íºÍͳ¼Æͼ£¨²»ÍêÕû£©£®
¸ù¾ÝÒÔÉÏÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Çó±íÖÐa£¬b£¬c£¬dµÄÖµ£¬²¢²¹È«ÌõÐÎͳ¼Æͼ£»
£¨2£©ÈôµÈ¼¶A£¬B£¬C£¬D£¬E·Ö±ð¶ÔÓ¦10·Ö£¬8·Ö£¬6·Ö£¬4·Ö£¬2·Ö£¬Çó¸Ã¿¼³¡¡°ÉùÀÖ¡±¿ÆÄ¿¿¼ÊÔµÄƽ¾ù·Ö£®
£¨3£©ÒÑÖª±¾¿¼³¡²Î¼Ó²âÊԵĿ¼ÉúÖУ¬Ç¡ÓÐÁ½È˵ÄÕâÁ½¿Æ³É¼¨¾ùΪA£¬ÔÚÖÁÉÙÒ»¿Æ³É¼¨ÎªAµÄ¿¼ÉúÖУ¬Ëæ»ú³éÈ¡Á½È˽øÐÐÃæÊÔ£¬ÇóÕâÁ½È˵ÄÁ½¿Æ³É¼¨¾ùΪAµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬½«ÆäÈÆBµã˳ʱÕëÐýתһÖÜ£¬Ôò·Ö±ðÒÔBA£¬BCΪ°ë¾¶µÄÔ²ÐÎÐγÉÒ»Ô²»·£¨ÒõÓ°²¿·Ö£©£¬ÎªÇó¸ÃÔ²»·µÄÃæ»ý£¬Ö»Ðè²âÁ¿Ò»ÌõÏ߶εij¤¶È£¬ÕâÌõÏ߶ξÍÊÇ£¨¡¡¡¡£©
A£®ADB£®ABC£®BDD£®AC

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èç¹ûÒ»ÌõÖ±ÏßÄܹ»½«Ò»¸ö·â±ÕͼÐεÄÖܳ¤ºÍÃæ»ýͬʱƽ·Ö£¬ÄÇô¾Í°ÑÕâÌõÖ±Ïß³Æ×÷Õâ¸ö·â±ÕͼÐεĶþ·ÖÏߣ®
£¨1£©ÇëÔÚͼ1µÄÈý¸öͼÐÎÖУ¬·Ö±ð×÷Ò»Ìõ¶þ·ÖÏߣ®
£¨2£©ÇëÄãÔÚͼ2ÖÐÓó߹æ×÷ͼ·¨×÷Ò»ÌõÖ±Ïß l£¬Ê¹µÃËü¼ÈÊǾØÐεĶþ·ÖÏߣ¬ÓÖÊÇÔ²µÄ¶þ·ÖÏߣ®
£¨±£Áô×÷ͼºÛ¼££¬²»Ð´»­·¨£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸