【题目】在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;
(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)
(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;
(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.
【答案】(1)AE=DF,AE⊥DF;
(2)是;
(3)成立,理由见解析;
(4)CP=QC﹣QP=.
【解析】
试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;
(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;
(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
试题解析:(1)AE=DF,AE⊥DF.
理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.
在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).
∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;
(2)是;
(3)成立.
理由:由(1)同理可证AE=DF,∠DAE=∠CDF
延长FD交AE于点G,
则∠CDF+∠ADG=90°,
∴∠ADG+∠DAE=90°.
∴AE⊥DF;
(4)如图:
由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=,
∴CP=QC﹣QP=.
科目:初中数学 来源: 题型:
【题目】某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的众数是( )
最高气温(°C) | 18 | 19 | 20 | 21 | 22 |
天数 | 1 | 2 | 2 | 3 | 2 |
A.20B.20.5C.21D.22
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件是随机事件的是( )
A. 一滴花生油滴入水中,油会浮在水面 B. 三条线段可以组成一个三角形
C. 400人中至少有两人的生日在同一天 D. 在一个仅装着红球和黑球的袋中摸球,摸出白球
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com