精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx+c的图象与x轴交于(1,0)和(x1,0),其中-2<x1<-1,与y轴交于正半轴上一点.下列结论:

①b>0;②数学公式;③a>b;④-a<c<-2a.

其中所有正确结论的序号是________.

②④
分析:根据与坐标轴的交点判断出a<0,然后把交点坐标(1,0)代入函数解析式求出a、b、c的关系式,再判断出对称轴在-到0之间,然后对各小题分析判断即可得解.
解答:∵抛物线与x轴的交点为(1,0)和(x1,0),-2<x1<-1,与y轴交于正半轴,
∴a<0,
∵-2<x1<-1,
∴-<-<0,
∴b<0,b>a,故①错误,③错误;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,
∴ac<b2,故②正确;
∵抛物线与x轴的交点有一个为(1,0),
∴a+b+c=0,
∴b=-a-c,
∵b<0,b>a(已证),
∴-a-c<0,-a-c>a,
∴c>-a,c<-2a,
∴-a<c<-2a,故④正确,
综上所述,正确的结论有②④.
故答案为:②④.
点评:本题考查了二次函数的图象与系数的关系,根据图象与坐标轴的交点坐标判断出a是负数是解题的关键,结论④的判断有点难度,先根据与x轴的交点坐标求出b=-a-c是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案