精英家教网 > 初中数学 > 题目详情

【题目】在△ABC和△DCE中,CA=CBCD=CE,∠CAB= CED=α.

(1)如图1,将ADEB延长,延长线相交于点0.

①求证:BE= AD;

②用含α的式子表示∠AOB的度数(直接写出结果);

(2)如图2,当α=45°时,连接BDAE,CMAEM点,延长MCBD交于点N.求证:NBD的中点.

:(2)问的解答过程无需注明理由.

【答案】1)①见解析∠BOA=2α2)见解析

【解析】

1)①根据等腰三角形的性质和三角形的内角和得到∠ACB=∠DCE,根据全等三角形的性质即可得到结论;

②根据全等三角形的性质得到∠CAD=CBE=α+∠BAO,根据三角形的内角和即可得到结论;

2)如图2,作BPMN的延长线上于点P,作DQMNQ,根据全等三角形的性质得到MC=BP,同理CM=DQ,等量替换得到DQ=BP,根据全等三角形的性质即可得到结论.

1)①∵CA=CB,CD=CE,CAB=CED=α

∴∠ACB=180°-2α∠DCE=180°-2α

∠ACB=∠DCE

∠ACB-∠DCB=∠DCE-∠DCB

∠ACD=∠BCE

△ACD△BCE

△ACD△BCE

BE=AD

∵△ACD△BCE

∠CAD=∠CBE=α+∠BAO

∵∠ABE=BOA+BAO

∠CBE+α=∠BOA+BAO

∴∠BAO+α+α=∠BOA+BAO

∴∠BOA=2α

2)如图2,作BPMN的延长线上于点P,作DQMNQ

∠BCP+∠BCA=∠CAM+∠AMC

∴∠BCA=AMC

∴∠BCP=∠CAM

△CBP△ACM

△CBP△ACMAAS

MC=BP.

同理△CDQ△ECM

CM=DQ

∴DQ=BP

△BPN△DQN

△BPN△DQN

BN=ND

NBD中点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在五边形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分别为AC、AB、BC的中点.

(1)求证:△EMO≌△OND;

(2)若AB=AC,且∠BAC=40°,当∠DAB等于多少时,四边形ADOE是菱形,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强建设“经济强、环境美、后劲足、群众富”的实力城镇,聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶计划。现决定将AB两种类型鱼苗共320箱运到某村养殖,其中A种鱼苗比B种鱼苗多80箱。

1)求A种鱼苗和B种鱼苗各多少箱?

2)现计划租用甲、乙两种货车共8辆,一次性将这批鱼苗全部运往同一目的地。已知甲种货车最多可装A种鱼苗40箱和B种鱼苗10箱,乙种货车最多可装A种鱼苗和B种鱼苗各20箱。如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,则安排甲、乙两种货车有哪几种不同的方案?并说明选择哪种方案可使运输费最少?最少运输费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD,ABC+ADC=180,连接ACBD.

(1)如图1,当∠ACD=CAD=45时,求∠CBD的度数;

(2)如图2,当∠ACD=CAD=60时,求证:AB+BC=BD

(3)如图3,(2)的条件下,过点CCKBD于点K,AB的延长线上取点F,使∠FCG=60,过点FFHBD于点H,BD=8,AB=5,GK=,求BH的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.

(1)根据题意,将下面的表格补充完整.

(2)直接写出yx的关系式.

(3)要使粘合后的长方形总面积为1656cm2,则需用多少张这样的白纸?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC和△DCE中,CA=CBCD=CE,∠CAB= CED=α.

(1)如图1,将ADEB延长,延长线相交于点0.

①求证:BE= AD;

②用含α的式子表示∠AOB的度数(直接写出结果);

(2)如图2,当α=45°时,连接BDAE,CMAEM点,延长MCBD交于点N.求证:NBD的中点.

:(2)问的解答过程无需注明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,∠ACB90°,∠CAB30°,以线段AB为边向外作等边△ABDE是线段AB的中点连接CE并延长交线段AD于点F

1)求证四边形BCFD为平行四边形

2)若AB6求平行四边形BCFD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图1,在△ABC中,∠ACB90°,BCAC,点DAB上,DEABBCE,点FAE的中点

1)写出线段FD与线段FC的关系并证明;

2)如图2,将△BDE绕点B逆时针旋转α0°<α90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;

3)将△BDE绕点B逆时针旋转一周,如果BC4BE2,直接写出线段BF的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区的门票销售分两类:一类为散客门票,价格为/张;另一类为团体门票(一次性购买门票张以上),每张门票价格在散客门票价格的基础上打折,某班部分同学要去该景点旅游,设参加旅游人,购买门票需要

1)如果每人分别买票,求之间的函数关系式:

2)如果购买团体票,求之间的函数关系式,并写出自变量的取值范围;

3)请根据人数变化设计一种比较省钱的购票方式.

查看答案和解析>>

同步练习册答案