精英家教网 > 初中数学 > 题目详情

如图,△ABC的三边分别切⊙O于D,E,F,若∠A=50°,则∠DEF=


  1. A.
    65°
  2. B.
    50°
  3. C.
    130°
  4. D.
    80°
A
分析:连接OD,OF.运用圆周角定理求解.
解答:解:连接OD,OF.
则∠ADO=∠AFO=90°,
∴∠DOF=180°-∠A=130°,
∴∠DEF=65°.
故选A.
点评:本题利用圆中的有关性质和四边形内角和定理解题比较简便.其中涉及到圆周角定理和切线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的三边分别切⊙O于D,E,F,若∠A=40°,则∠DEF=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•邢台一模)(1)如图,RT△ABC的三边长分别为3、4、5,求△ABC内切圆的半径;
(2)如图,△ABC的三边长分别为a、b、c,面积为S,其内切圆的半径为r,试用a、b、c和S表示r;
(3)如图,四边形ABCD的周长为l,面积为S,其内切圆的半径为r,试用l、s表示r;
(4)若一个n变形的周长为l,面积为S,其内切圆的半径为r,直接写出r、l和S的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的三边AB、BC、AC的长分别为4,6,8,其三条角平分线将△ABC分成三个三角形,则S△OAB:S△OBC:S△OAC=
2:3:4
2:3:4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的三边长分别为AC=12,AB=15,BC=9.若将△ABC沿线段AD折叠,点C正好落在AB边上的点E处.求线段CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的三边长分别是6cm、8cm、10cm,现在分别取三边的中点E、F、G,顺次连接E、F、G,则△EFG的面积为
6 cm2
6 cm2

查看答案和解析>>

同步练习册答案