精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.

(1)求证:梯形ABCD是等腰梯形;

(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.

 

【答案】

(1)证明见解析(2)当AB⊥AC时,四边形AECD是菱形,理由见解析

【解析】解:(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD。

又∵EA=ED,∴∠EAD=∠EDA。∴∠DEC=∠AEB。

又∵EB=EC,∴△DEC≌△AEB(SAS)。

∴AB=CD。

∴梯形ABCD是等腰梯形。

(2)当AB⊥AC时,四边形AECD是菱形。理由如下:

∵E为BC的中点,BC=2AD,∴BE=EC=AD。

又∵AD∥BC,∴四边形ABED和四边形AECD均为平行四边形。∴AB=ED。

∵AB⊥AC,∴AE=BE=EC。∴四边形AECD是菱形。

过A作AG⊥BE于点G,

∵AE=BE=AB=2,∴△ABE是等边三角形。

∴∠AEB=60°,∴AG=

∴S菱形AECD=EC•AG=2×=2

(1)由AD∥BC,由平行线的性质,可证得∠DEC=∠EDA,∠BEA=∠EAD,又由EA=ED,由等腰三角形的性质,可得∠EAD=∠EDA,则可得∠DEC=∠AEB,从而证得△DEC≌△AEB,即可得梯形ABCD是等腰梯形。

(2)由AD∥BC,BE=EC=AD,可得四边形ABED和四边形AECD均为平行四边形,又由AB⊥AC,AE=BE=EC,易证得四边形AECD是菱形。过A作AG⊥BE于点G,易得△ABE是等边三角形,即可求得答案AG的长,从而求得菱形AECD的面积。 

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案