精英家教网 > 初中数学 > 题目详情
如图.正方形ABCD的面积为9,△ABE是等边三角形,点E在正方形ABCD内,P为对角线AC上一动点,使PD+PE最小,则这个最小值为
 
考点:轴对称-最短路线问题,正方形的性质
专题:压轴题
分析:由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为9,可求出AB的长,从而得出结果.
解答:解:设BE与AC交于点P',连接BD.
∵点B与D关于AC对称,
∴P'D=P'B,
∴P'D+P'E=P'B+P'E=BE最小.
∵正方形ABCD的面积为9,
∴AB=3,
又∵△ABE是等边三角形,
∴BE=AB=3.
故答案为:3.
点评:本题考查的是轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

阅读下面的材料:
∵ax2+bx+c=0(a≠0)的根为x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

请利用这一结论解决问题
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)设方程2x2+3x+1=0的根为x1、x2,求
1
x1
+
1
x2
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=
2
3
x+b
与x轴相交于点A(-3,0),与y轴相交于点B,C是x轴上的一个定点,其坐标为(3,0).若M为线段AC上的一个动点(不与点A,C重合),连接MB,以点M为端点作射线MN交AB于点N,使∠BMN=∠BAC.
(1)求证:△MBC∽△NMA;
(2)是否存在点M使△MBN为直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB为⊙0的直径,DC、DA、CB分别切⊙O于G、A、B,OE⊥BD于F,交BC的延长线于E,连CF.
(1)求证:
BC
OB
=
OA
AD

(2)若tan∠ABD=
3
4
,求tan∠CFE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D、E分别是AB、AC上的点,AD=AE,BD=CE.
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是由10个半径相同的圆组合而成的烟花横截面,点A、B、C分别是三个角上的圆的圆心,且三角形ABC为等边三角形.若圆的半径为r,组合烟花的高为h,则组合烟花侧面包装纸的面积至少需要(接缝面积不计)(  )
A、18πrh
B、2πrh+18rh
C、πrh+12rh
D、2πrh+12rh

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:〔-
1
2
-1-
12
+〔1-
2
0+4sin60°;
(2)化简:
a2-9
a2+6a+9
÷(1-
3
a
).

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
16
-
9
+
3-27

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC和Rt△ADE,∠ACB=∠AED=90°,∠BAC=∠DAE=30°,P为线段BD的中点,连接PC,PE.
(1)如图1,若AC=AE,C、A、E依次在同一条直线上,则∠CPE=
 
;PC与PE存在的等量关系是
 

(2)如图2,若AC≠AE,C、A、E依次在同一条直线上,猜想∠CPE的度数及PC与PE存在的等量关系,并写出你的结论;(不需要证明)
 

(3)如图3,在图2的基础上,若将Rt△ADE绕点A逆时针任意旋转一个角度,使C、A、E不在一条直线上,试探究∠CPE的度数及PC与PE存在的等量关系,写出你的结论并说明理由.

查看答案和解析>>

同步练习册答案