18.“数形结合”和“建模思想”是数学中的两个很重要的思想方法,先阅读以下材料,然后解答后面的问题.
例:求代数式$\sqrt{{x}^{2}+{3}^{2}}+\sqrt{(12-x)^{2}+{2}^{2}}$的最小值.
解析:$\sqrt{{x}^{2}+{3}^{2}}$和$\sqrt{(12-x)^{2}+{2}^{2}}$是勾股定理的形式,$\sqrt{{x}^{2}+{3}^{2}}$是直角边分别是x和3的直角三角形的斜边,$\sqrt{(12-x)^{2}+{2}^{2}}$是直角边分别是12-x和2的直角三角形的斜边,因此,我们构造两个直角三角形△ABC和△DEF,并使直角边BC和EF在同一直线上(图1)向右平移直角三角形ABC使点B和E重合(图2),这时CF=x+12-x=12,AC=3,DF=2,问题就变成“点B在线段CF的何处时,AB+DB最短?”,根据两点间线段最短,得到线段AD就是它们的最小值.
小结:本题利用代数式$\sqrt{{x}^{2}+{3}^{2}}+\sqrt{(12-x)^{2}+{2}^{2}}$的形式特点,把它转化成为两个直角三角形的问题,从而利用已学过的几何知识来解决这个代数式问题,这就是建模思想与数形结合思想,回答下面问题:
(1)请你完成例题的解答;
(2)变式训练:求代数式$\sqrt{{x}^{2}+16}$+$\sqrt{(10-x)^{2}+4}$的最小值;
(3)拓展练习:解方程$\sqrt{9-{x}^{2}}$+$\sqrt{16-{x}^{2}}$=5(利用几何方法解答)
