精英家教网 > 初中数学 > 题目详情
附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?(  )
A.△ACFB.△ADEC.△ABCD.△BCF
B
根据图象可知△ACD和△ADE全等,
理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,
∴△ACD≌△AED,
即△ACD和△ADE全等,
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在等腰直角△ABC中,∠BAC=90°,AB=AC,
(1)如图1,点D、E分别是AB、AC边的中点,AF⊥BE交BC于点F,连结EF、CD交于点H.求证,EF⊥CD;
(2)如图2,AD=AE,AF⊥BE于点G交BC于点F,过F作FP⊥CD交BE的延长线于点P,试探究线段BP,FP,AF之间的数量关系,并说明理由.

图1                       图2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在□ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F.
求证:△BEF ≌ △CDF

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边△CDE,使点E、A在直线DC的同侧,连接AE.
求证:AE∥BC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是(        )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要  cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要    cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在等腰Rt△ABC中, ,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF .在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8,其中正确的结论是(  )

A.①②③      B.①④⑤      C.①③④     D.③④⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线l上有三个正方形a、b、c,若a、c的面积分别为5和11,则b的面积为(  )
A.4B.6 C.16D.55

查看答案和解析>>

同步练习册答案