精英家教网 > 初中数学 > 题目详情
如图,抛物线交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1。
(1) 求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线 PC的位置关系,并说明理由。
        (参考数:)
解:(1)由已知条件可知: 抛物线经过A(-3,0)、B(1,0)两点, 
    ∴          
   ∴
(2)∵
       ∴ P(-1,-2),C 
      设直线PC的解析式是,则   解得
      ∴ 直线PC的解析式是
(3)如图,过点A作AE⊥PC,垂足为E,
        设直线PC与轴交于点D,则点D的坐标为(3,0)
        在Rt△OCD中,∵ OC=, 
        ∴
       ∵ OA=3,,∴AD=6
        ∵ ∠COD=∠AED=90,∠CDO公用,
        ∴ △COD∽△AED
       ∴  即
      ∴
     ∵
    ∴ 以点A为圆心、直径为5的圆与直线PC相离。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,-4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=-x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN下方的抛物线于点F.问:在直线MN上是否存在点P,使得以P、E、D、F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,-4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=-x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN下方的抛物线于点F.问:在直线MN上是否存在点P,使得以P、E、D、F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案