精英家教网 > 初中数学 > 题目详情
18.已知抛物线y=ax2+bx+c过(-1,1)和(5,1)两点,那么该抛物线的对称轴是直线x=2.

分析 根据函数值相等的点到对称轴的距离相等可求得答案.

解答 解:
∵抛物线y=ax2+bx+c过(-1,1)和(5,1)两点,
∴对称轴为x=$\frac{-1+5}{2}$=2,
故答案为:x=2.

点评 本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.观察下列各式:
$\sqrt{2-\frac{2}{5}}$=2$\sqrt{\frac{2}{5}}$;$\sqrt{3-\frac{3}{10}}$=3$\sqrt{\frac{3}{10}}$;
$\sqrt{4-\frac{4}{17}}$=4$\sqrt{\frac{4}{17}}$;$\sqrt{5-\frac{5}{26}}$=5$\sqrt{\frac{5}{26}}$;

针对上述各式反映的规律,用字母n(n为任意自然数,n≥2)表示上述规律,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)计算:($\frac{3x+4}{{x}^{2}-1}$-$\frac{2}{x-1}$)÷$\frac{x+2}{{x}^{2}-2x+1}$        
(2)解方程:$\frac{3}{2}$-$\frac{1}{3x-1}$=$\frac{5}{6x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,一艘海轮位于小岛C的南偏东60°方向,距离小岛120海里的A处,该海轮从A处正北方向航行一段距离后,到达位于小岛C北偏东45°方向的B处.
(1)求该海轮从A处到B处的航行过程中与小岛C之间的最短距离(记过保留根号);
(2)如果该海轮以每小时20海里的速度从B处沿BC方向行驶,求它从B处到达小岛C的航行时间(结果精确到0.1小时).(参考数据:$\sqrt{2}$=1.41,$\sqrt{3}$=1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知抛物线y=(k-1)x2+3x的开口向下,那么k的取值范围是k<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知点D是△ABC的边BC上一点,且BD=$\frac{1}{2}$CD,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$.
(1)求向量$\overrightarrow{AD}$(用向量$\overrightarrow a$、$\overrightarrow b$表示);
(2)求作向量$\overrightarrow{AC}$在$\overrightarrow a$、$\overrightarrow b$方向上的分向量.
(不要求写作法,但要指出所作图中表示结论的向量)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知a>b,下列关系式中一定正确的是(  )
A.a2<b2B.2a<2bC.a+2<b+2D.-a<-b

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.在下列y关于x的函数中,一定是二次函数的是(  )
A.y=2x2B.y=2x-2C.y=ax2D.$y=\frac{a}{x^2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)

查看答案和解析>>

同步练习册答案