精英家教网 > 初中数学 > 题目详情

作业宝如图,已知四边形ABCD为菱形,对角线AC=6,BD=8,将△AOB沿射线AD的方向平移,平移的距离为线段AD的长,平移后得△DEC,则四边形ACED的周长等于


  1. A.
    14
  2. B.
    16
  3. C.
    18
  4. D.
    20
C
分析:根据菱形的对角线互相垂直平分,可得菱形的边长,再根据平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,可求四边形ACED的周长.
解答:∵在菱形ABCD中,对角线AC=6,BD=8,
∴AD==5,
由平移的性质,得,
DE=AO=AC=3,CE=BO=BD=4,
∴四边形ACED的周长=AD+DE+EC+AC=5+3+4+6=18.
故选C.
点评:本题主要考查了菱形的性质和平移的性质以及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案