精英家教网 > 初中数学 > 题目详情
4.佳佳向探究一元三次方程x3+2x2-x-2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2-2x-3的图象与x轴的交点为(-1,0)和(3,0),交点的横坐标-1和3即为x2-2x-3=0的解.
根据以上方程与函数的关系,如果我们直到函数y=x3+2x2-x-2的图象与x轴交点的横坐标,即可知方程x3+2x2-x-2=0的解.
佳佳为了解函数y=x3+2x2-x-2的图象,通过描点法画出函数的图象.
 x …-3-$\frac{5}{2}$-2-$\frac{3}{2}$-1-$\frac{1}{2}$ 0 $\frac{1}{2}$ 1 $\frac{3}{2}$
 y …-8-$\frac{21}{8}$ 0 $\frac{5}{8}$ m-$\frac{9}{8}$-2-$\frac{15}{8}$ 0 $\frac{35}{8}$12 …
(1)直接写出m的值,并画出函数图象;
(2)根据表格和图象可知,方程的解有3个,分别为-2,或-1或1;
(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.

分析 (1)求出x=-1时的函数值即可解决问题;利用描点法画出图象即可;
(2)利用图象以及表格即可解决问题;
(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2-x-2的函数值大于0的自变量的取值范围,观察图象即可解决问题;

解答 解:(1)由题意m=-1+2+1-2=0.
函数图象如图所示.

(2)根据表格和图象可知,方程的解有3个,分别为-2,或-1或1.
故答案为3,-2,或-1或1.

(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2-x-2的函数值大于0的自变量的取值范围.
观察图象可知,-2<x<-1或x>1.

点评 本题考查函数与图象的关系,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,学会利用图象解决一个不等式问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.|(-3)-5|等于(  )
A.-8B.-2C.2D.8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知抛物线L:y=ax2+bx+c与抛物线L′:y=x2-2mx+4m+1关于直线x=2对称,且L′交y轴于点P(0,21),则方程ax2+bx+c=0的两个根为(  )
A.x1=0,x2=3B.x1=1,x2=-3C.x1=3,x2=7D.x1=-7,x2=-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发,以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,
(1)t取何值时,四边形EFCD为矩形?
(2)M是BC上一点,且BM=4,t取何值时,以A、M、E、F为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知双曲线y=$\frac{k}{x}$经过点(m,n),(n+1,m-1),(m2-1,n2-1),则k的值为(  )
A.0或3B.0或-3C.-3D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.小东根据学习函数的经验,对函数y=$\frac{4}{{(x-1)}^{2}+1}$的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y=$\frac{4}{{(x-1)}^{2}+1}$的自变量x的取值范围是全体实数;
(2)表格是y与x的几组对应值.
 x-2-1 -$\frac{1}{2}$  $\frac{1}{2}$ 1 $\frac{3}{2}$ 2 $\frac{5}{2}$ 4 …
 y … $\frac{2}{5}$$\frac{4}{5}$  $\frac{16}{13}$ 2 $\frac{16}{5}$ $\frac{16}{5}$ 2 $\frac{16}{13}$$\frac{4}{3}$  …
表中m的值为$\frac{2}{5}$;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.
根据描出的点,画出函数y=$\frac{4}{{(x-1)}^{2}+1}$的大致图象;
(4)结合函数图象,请写出函数y=$\frac{4}{{(x-1)}^{2}+1}$的一条性质:①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点.
(5)如果方程$\frac{4}{{(x-1)}^{2}+1}$=a有2个解,那么a的取值范围是0<a<4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在方格纸中,每个小正方形边长都是1,?ABCD的四个顶点都在小方格的顶点上,按下列要求画一个面积与?ABCD面积相等的四边形,使它的顶点均在方格的顶点上.(四边形的边用实线表示,顶点写上规定的字母).
(1)在图甲中画一个矩形EFGH.
(2)在图乙中画一个菱形MNPQ.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,?ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为(  )
A.12B.15C.16D.18

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.计算:|-2|-$\root{3}{8}$=0.

查看答案和解析>>

同步练习册答案