
解:(1)OB=BP.
理由:连接OC,
∵PC切⊙O于点C,
∴∠OCP=90°,
∵OA=OC,∠OAC=30°,
∴∠OAC=∠OCA=30°,
∴∠COP=60°,
∴∠P=30°,
在Rt△OCP中,OC=

OP=OB=BP;
(2)由(1)得OB=

OP,
∵⊙O的半径是2,
∴AP=3OB=3×2=6,
∵

=

,
∴∠CAD=∠BAC=30°,
∴∠BAD=60°,
∵∠P=30°,
∴∠E=90°,
在Rt△AEP中,AE=

AP=

×6=3.
分析:(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;
(2)由(1)可得OB=

OP,即可求得AP的长,又由

=

,即可得∠CAD=∠BAC=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.
点评:此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.