分析 (1)根据正方形的判定定理证明;
(2)根据勾股定理求出AB,根据切线长定理得到AF=AE,BD=BF,CD=CE,结合图形列式计算即可.
解答 解:(1)∵⊙O是△ABC的内切圆,
∴OD⊥BC,OE⊥AC,又∠C=90°,
∴四边形ODCE是矩形,
∵OD=OE,
∴四边形ODCE是正方形;
(2)∵∠C=90°,AC=6,BC=8,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=10,
由切线长定理得,AF=AE,BD=BF,CD=CE,
∴CD+CE=BC+AC-BD-CE=BC+AC-AB=4,
则CE=2,即⊙O的半径为2.
点评 本题考查的是三角形的内切圆和内心的概念和性质、正方形的判定和性质,掌握切线长定理、正方形的判定定理和性质定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | AO=BO | B. | ∠AOB可能等于30° | ||
| C. | △AOG与△BOH的面积相等 | D. | △AOG≌△BOH |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com