精英家教网 > 初中数学 > 题目详情
(2013•临沂)如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.
(1)求证:∠A=2∠DCB;
(2)求图中阴影部分的面积(结果保留π和根号).
分析:(1)连接OD,求出∠ODB=90°,求出∠B=30°,∠DOB=60°,求出∠DCB度数,关键三角形内角和定理求出∠A,即可得出答案;
(2)根据勾股定理求出BD,分别求出△ODB和扇形DOE的度数,即可得出答案.
解答:(1)证明:连接OD,
∵AB是⊙O切线,
∴∠ODB=90°,
∴BE=OE=OD=2,
∴∠B=30°,∠DOB=60°,
∵OD=OC,
∴∠DCB=∠ODC=
1
2
∠DOB=30°,
∵在△ABC中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∴∠A=2∠DCB;

(2)解:∵∠ODB=90°,OD=2,BO=2+2=4,由勾股定理得:BD=2
3

∴阴影部分的面积S=S△ODB-S扇形DOE=
1
2
×2
3
×2-
60π•22
360
=2
3
-
2
3
π.
点评:本题考查了含30度角的直角三角形性质,勾股定理,扇形的面积,勾股定理,切线的性质等知识点的应用,主要考查学生综合性运用性质进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临沂)如图,已知AB∥CD,∠2=135°,则∠1的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临沂)如图,抛物线经过A(-1,0),B(5,0),C(0,-
52
)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案