精英家教网 > 初中数学 > 题目详情

①若x+y=1,且(x+2)(y+2)=3,求x2+xy+y2的值;
②设a、b、c为整数,且a2+b2+c2-2a+4b-6c+14=0,求(a+c)b的值.

解:①由于x+y=1且(x+2)(y+2)=3,
即:xy+2(x+y)+4=3,
所以,xy=-3,
x2+xy+y2=(x+y)2-xy=12-(-3)=4
所以,原代数式的值为:4;
②由于a、b、c为整数,且a2+b2+c2-2a+4b-6c+14=0,
即:(a-1)2+(b-2)2+(c-3)2=0,
所以,a=1,b=2.c=3,
将a、b、c的值代入原代数式得:原式=(1+3)2=16,
所以,原代数式的值为:16.
分析:①原代数式等价于(x+y)2-xy,只要求出x+y,xy的值代入求值即可,已知x+y=1且(x+2)(y+2)=3可得x=y=1,xy=-3;
②a2+b2+c2-2a+4b-6c+14=0可等价于(a-1)2+(b-2)2+(c-3)2=0,又a、b、c为整数,得出a=1,b=2.c=3,代入代数式求值即可.
点评:本题主要考查代数式的求值,关键在于求出代数式中的未知量或者将要求的代数式化为与已知条件相关的量,代入求值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若a为实数,且a≠0,则下列各式中一定成立的是(  )
A、a2+1>1
B、1-a2<0
C、1+
1
a
>1
D、1-
1
a
>1

查看答案和解析>>

科目:初中数学 来源: 题型:

12、若mx<my,且x>y,则m
0.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠ACB=90°,BC>AC,以斜边AB所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA2+OB2=17,且线段OA、OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0的两个根.
(1)求C点的坐标;
(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E三点的抛物线的解析式,并画出此抛物线的草图;
(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

若a+b=-2,且a≥2b,则(  )
A、
b
a
有最小值
1
2
B、
b
a
有最大值1
C、
a
b
有最大值2
D、
a
b
有最小值-
8
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰州模拟)如图,已知反比例函数y=
k
x
的图象经过点A(-1,
3
).
(1)求此反比例函数的解析式;
(2)若点O是坐标原点,将线段OA绕点O顺时针方向旋转150°得到线段OP,试确定点P是否在此反比例函数的图象上,并说明理由;
(3)若a>0,且点M(a,m)、N(a-1,n)在此反比例函数的图象上,试比较m、n的大小.

查看答案和解析>>

同步练习册答案