精英家教网 > 初中数学 > 题目详情

如图1,直角梯形ABCD中,∠A=∠B=90°,AD=AB=6cm,BC=8cm,点E从点A出发沿AD方向以1cm/s的速度向终点D运动;点F从点C出发沿CA方向以2cm/s的速度向终点A运动,当点E、点F中有一点运动到终点,另一点也随之停止.设运动时间为ts.

(1)当t为何值时,△AEF和△ACD相似?
(2)如图2,连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值及四边形ABFE的面积;若不能,请说明理由;
(3)当t为何值时,△AFE的面积最大?最大值是多少?

解:(1)当运动t秒时,△AEF∽△ADC时,
,AE=t,CF=2t,
∴AF=AC-2t
∵∠A=∠B=90°,AD=AB=6cm,BC=8cm,由勾股定理,得
AC=10cm,
∴AF=10-2t
,解得
t=
当运动t秒时,△AEF∽△ACD时,

解得:
t=

(2)设t秒后四边形AEFB是直角梯形,延长EF交BC于点G,

∴EG⊥AD,EG⊥BC
∵∠B=90°,
∴AB⊥BC,
∴EG∥AB,且AD∥BC
∴△CGF∽△CBA,四边形AEGB为矩形
,EG=AB=6


∴EF=6-
在Rt△AEF中,由勾股定理,得
t2+(6-t)2=(10-2t)2,解得
t1=,t2=(不符合题意应舍去)
∴EF=,AE=
∴S四边形ABFE=
=cm2

(3)过点F作MN⊥AD于M,交BC于点N
∴∠DEG=90°.
∵AD∥BC,
∴∠BGE=∠DEG=90°.
∵∠B=90°,
∴EG∥AB,
∴△CFN∽△CAB,


∴MF=6-
∴S△AFE=
=-(t-2+
∴当t=时,S△AFE最大,最大值是
分析:(1)E、F在移动的过程中,△AEF和△ACD相似有两种情况,△AEF∽△ACD和△AEF∽△ADC,根据相似三角形的性质就可以求出t的值.
(2)E、F移动t秒后ABFE是直角梯形,则FE⊥AD,延长EF交BC于点G,同样利用三角形相似把FG表示出来,从而求出EF,根据勾股定理建立等量关系求出t值,就可以求出梯形的面积.
(3)过点F作MN⊥AD于M,交BC于点N,可以证明△CFN∽△CAB,表示出FN,从而表示出FM,利用三角形的面积公式及uky表示出三角形的面积S与t的函数关系式,从而求其解.
点评:本题是一道有关直角梯形的结合解答题,考查了二次函数的最值,相似三角形的判定与性质,勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,若AD=8,BC=10,则cosC的值为(  )
A、
4
5
B、
3
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,将直角梯形ABCD沿CE折叠,使点D落在AB上的F点,若AB=BC=12,EF=10,∠FCD=90°,则AF=
6或8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形OABC中,OA∥BC,A、B两点的坐标分别为A(13,0),B(11,12).动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿x轴向终点A运动,点Q以每秒1个单位的速度沿BC方向运动;当点P停止运动时,点Q也同时停止运动.线段PQ和OB相交于点D,过点D作DE∥x轴,交AB于点E,射线QE交x轴于点F.设动点P、Q运动时间精英家教网为t(单位:秒).
(1)当t为何值时,四边形PABQ是平行四边形.
(2)△PQF的面积是否发生变化?若变化,请求出△PQF的面积s关于时间t的函数关系式;若不变,请求出△PQF的面积.
(3)随着P、Q两点的运动,△PQF的形状也随之发生了变化,试问何时会出现等腰△PQF?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AD∥BC,∠D=90°,AD=a,BC=b,AB=c,以AB为直径作⊙O.试探究:
(1)当a,b,c满足什么关系时,⊙O与DC相离?
(2)当a,b,c满足什么关系时,⊙O与DC相切?
(3)当a,b,c满足什么关系时,⊙O与DC相交?

查看答案和解析>>

同步练习册答案