分析 (1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;
(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;
(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得CE=$\sqrt{1{0}^{2}-{6}^{2}}$=8,进而得出CD=8-6=2,在Rt△DCE中,求得DE=$\sqrt{{2}^{2}+{8}^{2}}$=$\sqrt{68}$,最后根据△ADE是等腰直角三角形,即可得出AE的长.
解答
解:(1)①如图1,∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠EAC}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE;
②∵BD=CE,AC=BC,
又∵BC=BD+CD,
∴AC=CE+CD;
(2)BD2+CD2=DE2.
证明:如图2,∵∠BAC=∠DAE=90°,![]()
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE=45°,BD=CE,
∴∠B+∠ACB=∠ACE+∠ACB=90°,
∴∠BCE=90°,
∴Rt△DCE中,CE2+CD2=DE2,
∴BD2+CD2=DE2;
(3)①(2)中的结论还成立.
理由:如图3,∵∠BAC=∠DAE=90°,![]()
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE,
在△ABD与△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴∠ABC=∠ACE=45°,BD=CE,
∴∠ABC+∠ACB=∠ACE+∠ACB=90°,
∴∠BCE=90°=∠ECD,
∴Rt△DCE中,CE2+CD2=DE2,
∴BD2+CD2=DE2;
②∵Rt△BCE中,BE=10,BC=6,
∴CE=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∴BD=CE=8,
∴CD=8-6=2,
∴Rt△DCE中,DE=$\sqrt{{2}^{2}+{8}^{2}}$=$\sqrt{68}$,
∵△ADE是等腰直角三角形,
∴AE=$\frac{DE}{\sqrt{2}}$=$\frac{\sqrt{68}}{\sqrt{2}}$=$\sqrt{34}$.
点评 本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用,解决问题的关键是掌握全等三角形的对应边相等,对应角相等.解题时注意:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 3 | C. | -3 | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (x+2)(x-2)=x2-4 | B. | x2-4=(x+2)(x-2) | ||
| C. | x2-4+3x=(x+2)(x-2)+3x | D. | x2+4x-2=x(x+4)-2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com