精英家教网 > 初中数学 > 题目详情
(2012•成都)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:

第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.
(注:裁剪和拼图过程均无缝且不重叠)
则拼成的这个四边形纸片的周长的最小值为
20
20
cm,最大值为
12+4
13
12+4
13
cm.
分析:首先确定剪拼之后的四边形是个平行四边形,其周长大小取决于MN的大小.然后在矩形中探究MN的不同位置关系,得到其长度的最大值与最大值,从而问题解决.
解答:解:画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示.
图中,N1N2=EN1+EN2=NB+NC=BC,
M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),
又∵M1M2∥N1N2,∴四边形M1N1N2M2是一个平行四边形,
其周长为2N1N2+2M1N1=2BC+2MN.
∵BC=6为定值,∴四边形的周长取决于MN的大小.
如答图2所示,是剪拼之前的完整示意图.
过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半.
∵M是线段GH上的任意一点,N是线段BC上的任意一点,
根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;
而MN的最大值等于矩形对角线的长度,即
PB2+BC2
=
42+62
=2
13

∵四边形M1N1N2M2的周长=2BC+2MN=12+2MN,
∴四边形M1N1N2M2周长的最小值为12+2×4=20,
最大值为12+2×2
13
=12+4
13

故答案为:20,12+4
13
点评:此题通过图形的剪拼,考查了动手操作能力和空间想象能力.确定剪拼之后的图形,并且探究MN的不同位置关系得出四边形周长的最值是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•成都)如图所示的几何体是由4个相同的小正方体组成.其主视图为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,将平行四边形ABCD的一边BC延长至E,若∠A=110°,则∠1=
70°
70°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数y=
k
x
(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若
BE
BF
=
1
m
(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则
S1
S2
=
m-1
m+1
m-1
m+1
. (用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=
3
5
,AK=2
3
,求FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都)如图,在平面直角坐标系xOy中,一次函数y=
5
4
x+m
(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求m的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究
M1P•M2P
M1M2
是否为定值,并写出探究过程.

查看答案和解析>>

同步练习册答案